Repozitorij

Repozitorij je prazan

Anketa

Na ovoj stranici trenutno nije odabrana niti jedna anketa!

Matematičke metode fizike 1

Šifra: 40682
ECTS: 7.0
Nositelji: prof. dr. sc. Igor Pažanin
Izvođači: dr. sc. Ana Kontrec - Auditorne vježbe
Prijava ispita: Studomat
Opterećenje:

1. komponenta

Vrsta nastaveUkupno
Predavanja 45
Auditorne vježbe 30
* Opterećenje je izraženo u školskim satima (1 školski sat = 45 minuta)
Opis predmeta:
CILJEVI PREDMETA: Glavni ciljevi kolegija Metode matematičke fizike 1 su savladavanje tehnika matematičke analize u skupu kompleksnih brojeva i razumijevanje pripadne teorijske osnove. Također student treba upoznati osnovne specijalne funkcije važne u matematičkoj fizici.

ISHODI UČENJA NA RAZINI PROGRAMA KOJIMA PREDMET DOPRINOSI:

2. Primjena znanja i razumijevanja
2.2. razmišljati analitički i konstruirati prikladne logičke argumente
2.3. matematički modelirati i rješavati standardne fizikalne probleme
4. Komunikacijske sposobnosti
4.2. jasno i koncizno prezentirati složene ideje
5. Sposobnost učenja
5.1. samostalno koristiti stručnu literaturu i ostale relevantne izvore informacija

OČEKIVANI ISHODI UČENJA NA RAZINI PREDMETA:

Po uspješnom završetku kolegija Matematičke metode fizike 1, student će biti sposoban:
1. definirati i pravilno tumačiti osnovne pojmove matematičke analize u skupu kompleksnih brojeva (nizovi, neprekidnost, limesi, derivacije i integrali te njihova svojstva, analitičke funkcije, Taylorov i Laurentov red, reziduumi);
2. definirati i pravilno tumačiti osnovne pojmove funkcija više varijabli (diferencijal i parcijalne derivacije)
3. razviti analitičke funkcije u pripadni Laurentov red;
4. riješiti poznate tipove kompleksnih integrala;
5. riješiti poznate primjere realnih integrala koje je moguće prikazati pomoću kompleksnih integrala;
6. opisati svojstva gama i beta funkcije te ih upotrijebiti u praktičnim računima

SADRŽAJ PREDMETA:

Sadržaj kolegija Matematičke metode fizike 1:
1. Kompleksni brojevi. Kompleksna ravnina. Nizovi kompleksnih brojeva. (2 sata)
2. Kompleksne funkcije. Neprekidnost i limes. (2 sata)
3. Funkcije više varijabli. Diferencijal funkcije više varijabli. Parcijalne derivacije. (4 sata)
4. Derivacija kompleksne funkcije. Analitičke funkcije. ( 2 sata)
5. Cauchy-Riemannovi uvjeti. Primjeri analitičkih funkcija. (4 sata)
6. Redovi funkcija. Konvergencija redova funkcija. Redovi potencija. ( 3 sata)
7. Integral kompleksne funkcije. (3 sata)
8. Cauchyev teorem i Cauchyeva integralna formula. (4 sata)
9. Razvoj analitičke funkcije u Taylorov red. (3 sata)
10. Laurentov razvoj analitičke funkcije. (3 sata)
11. Izolirani singulariteti. Klasifikacija izoliranih singulariteta. (3 sata)
12. Teorem o reziduumima . Primjena na određivanje realnih integrala. (3 sata)
13. Gama i beta funkcija. (3 sata)


OBVEZE STUDENATA:

Studenti su dužni dolaziti redovito na predavanja i vježbe, te rješavati domaće zadaća. Također moraju izaći na dva kolokvija. Prvi kolokvij je u sredini nastave, a drugi na kraju nastave. Kolokviji sadrže računske i teorijske zadatke.

OCJENJIVANJE I VREDNOVANJE RADA STUDENATA:

Pohađanje nastave i domaće zadaće nose 10 bodova. Kolokviji ukupno donose 60 bodova. Ukoliko su kolokviji riješeni za više od 40%, studenti pristupaju završnom ispitu, koji nosi 30 bodova. Završni ispit je usmeni/pismeni i na njemu studenti odgovaraju na teorijska pitanja Za polaganje ispita potrebno je skupiti barem 50 bodova u svim elementima ocjene.
Literatura:
  1. H. Kraljević, Matematičke metode fizike 1, Skripta, PMF-MO
  2. E. Freitag, R. Busam, Complex Analysis, Universitext, Springer, 2005.
  3. Š. Ungar, Kompleksna analiza, elektronicka skripta, http://web.math.hr/~ungar/kompleksna.pdf
  4. H. Kraljević, S. Kurepa, Matematička analiza IV, Tehnička knjiga, Zagreb, 1986.
Preduvjeti za:
Upis predmeta :
Položen : Matematička analiza 2
3. semestar
Obavezni predmet - Redovni Studij - Fizika; smjer: nastavnički
Termini konzultacija:
  • prof. dr. sc. Igor Pažanin:

    Utorkom 10-12 (uz najavu mailom)

    Lokacija: 219

Obavijesti