

ADSORPTIVE, CATALYTIC AND ANTIMICROBIAL APPLICATIONS OF SERBIAN NATURAL CLINOPTILOLITE

N. Rajić¹, J. Milenković², J. Pavlović², S. Jevtić¹, I. Kaplanec¹, A. Rečnik³, and J. Hrenović⁴

¹Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
 ²Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
 ³Institute Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
 ⁴Faculty of Science, Division of Biology, University of Zagreb, 10000 Zagreb, Croatia

Zlatokop mine: 2.000.000 t

Adsorption

Antimicrobial action

Water softening

Serbia:

75 % of the population has access to modern water supply systems;

Quality of supplied water is not adequate in all regions.

Bor river - the most contaminated river in Europe

Zeolite 2018, Krakow, 24-29th June, 2018

- Clinoptilolite (75-85 wt.%)
- Feldspars (10-15 wt.%)
- Quartz (8-10 wt.%)

A quantitative XRPD analysis of the tuff sample

N. Rajic et al, J. Hazard Mater. 172 (2009) 1450-1457.

Mineral composition

SEM photo of the tuff grain (different mineral phases differ in grey-scale brightness)

TEM image of the clinoptilolite phase

N. Rajic et al., J Phys Chem Solids 72 (2011) 800-803

Chemical composition

$Ca_{1.6}Mg_{0.7}K_{0.7}Na_{0.3}Al_{5.5}Si_{26}O_{72}\cdot 23H_2O$

N. Rajic et al, J. Hazard Mater. 172 (2009) 1450-1457.

N₂ adsorption/desorption isotherms at -196 °C

$S_{BET}, m^2 g^{-1}$	42
S_{meso} , $m^2 g^{-1}$	32
V_{mic} , cm ³ g ⁻¹	0.0052
A _L , m ² g ⁻¹	57

Pore size distribution

S_{BET} - calculated BET method; V_{mic} - micropore volume; S_{meso} - mesoporous surface area calculated using the α S-plot method; A_{L} - surface area from Langmuir method.

S Jevtić et al., Micropor Mesopor Mater 197 (2014) 92-100

- Batch experiments □Grain size: 0.063-0.1 mm
- □Initial conc.:
- 100-400 mg TM dm⁻³ (TM - Mn, Ni, Cu, Zn, Pb)
- Adsorption isotherms
 Kinetic studies

 kinetic models
 diffusion effects
 - Thermodynamic study

- Thermostatic bath:
 - 25-55 °C
- •N. Rajic et al., J. Hazardous Mat. 172 (2009) 1450-1454; N. Rajic et al, Appl. Surf. Sci. 257 (2010) 1524-1532; D. Stojakovic et al., J. Hazard Mat 185 (2011) 408-415; D. Stojakovic et al., Clay Clays Miner 59 (2011) 277-285; D. Stojakovic et al., Eniviron Eng Manag J 16 (2017) 131-140.

The Mn conc. as a function of the sputtering time obtained by XPS depth profiling on the samples with different Mn concentration

N. Rajic et al, J. Hazard Mater. 172 (2009) 1450-1457.

• Adsorption proceeds via an ion-exchange reaction following pseudo second-ordered kinetics.

 Cation type has a great impact on adsorption process. The equilibrium data for Pb and Zn were best described by Langmuir model, Sips model best fitted Mn and Ni and the isotherm for Cu was in accord with the Freundlich model;

 $\circ \Delta G^{\circ}$ decreases with temperature.

 $\circ \Delta H^{\circ}$ values of adsorption increasing in the series: Pb^{2+} < Mn^{2+} < Cu^{2+} < Ni^{2+}.

 $\circ \Delta S^\circ$ values are positive, change following different trend of increase: Mn^{2+} < Zn^{2+} < Pb^{2+} < Cu^{2+} < Ni^{2+}

Removal rate increases in the series Ni²⁺ < Mn²⁺ ≈ Zn²⁺ < Cu²⁺ < Pb²⁺.

water quality

Physico-chemical parameters of the spring water in the period 2006-2010.

	Parameter	Conc. (mg/dm ³)	Max. permissible conc. (mg/dm ³)	Parameter	Conc, µg/dm ³	Max. permissible conc. (µg/dm ³)
	pН	9.5	6.8-8.5	Mn	0.15	50
	Turbidity	0.5 (NTU)	1.2 (NTU)	Fe	35	300
	KMnO ₄	8	8	Ni	0.4	20
	Ca ²⁺	10	200	Cu	0.15	2000
4	Mg ²⁺	90	50	Zn	0.4	3000
	SO4 ²⁻	7	250	As	0.22	10
	NO ₃ -	5	50	Se	0.26	10
	NO ₂ - 0.005	0.005	0.03	Мо	0.02	70
	$\mathrm{NH_4^+}$	H ₄ ⁺ 0.2 0.1		Cd	0.003	3
	PO ₄ ³⁻ 0.02		0.003	Sb	0.01	3
	В	2 300		Ва	0.41	700
	Al 0.45 200 Cr 1.2 50		200	Hg	0.05	1
			50	Pb	0.02	10

12,096 m³/day (~ 120 inhabitants)

A pilot installed in 2013 in a small village near Raska. Small plant significantly decreased operational costs by replacing expensive synthetic polymer resins.

S. Tomic et al, Clay Mineral, 47 (2012) 81-92

Removal of Mg and recovering of the saturated zeolite proceed intermittently.

ADSORPTION OF SELECTED ANIONS

selenite/selenate
nitrite/nitrate
phosphate
salycilate

Modification of clinoptilolite

1. Modification with benzalkonium chloride (BC)

Cli surface modified with BC (BC does not enter channel system)

BC

- Pseudo second-ordered kinetics
- Removal rate ~ 80 % from SA solution with Co =100 μ g per 1 cm³)
- Relatively week electrostatic interactions between adsorbent and salycilate ions;
- Slowly realesing of adsorbed SA into phosphate buffer (pH~7)

A two stage release:

50 % during first 15 min 30 % during 5 h

a) TEM images of the Se-containing adsorbent, b) Electron diffraction pattern (EDP) recorded from area marked (c).

	S _{BET}	S _{meso}	A _L	V _{mic}
		m² g ⁻¹		cm ³ g ⁻¹
As-received	42	35	57	0.005
Fe-modified	117	71	161	0.039

a) Se K-edge XANES of the adsorbents and the reference Se compounds

b) Fourier transforms of the k^3 -weighted Se Kedge EXAFS spectra solid line; best fit EXAFS model: dashed line)

S Jevtić et al., Micropor Mesopor Mat 197 (2014) 92-100

Adsorption kinetics

$\frac{t}{a} =$	$=\frac{1}{k a^2}$	$+\frac{1}{2}t$	Anion	$q_e(mg g^{-1})$	k [g mg ⁻¹ h ⁻¹]	R ²
\mathbf{q}_{t}	κ ₂ q _e	Y e	SeO ₃ ²⁻	21.6	0.0685	0.9991
			SeO ₄ ²⁻	17.4	0.777	0.9999

S Jevtić et al., Micropor Mesopor Mater 197 (2014) 92-100

Phosphate adsorption

TEM image of phosphate-containing adsorbent. EDP (inset) indicates that the sample is amorphous. EDS analysis recorded from the areas indicated in the TEM image indicate an increase of the P-K peak with Fe-K stemming from the Fe-rich precipitate.

I Kaplanec et al., Desalin. Water Treat. (2017), manuscript in publication.

Spin-echo-mapping ³¹P NMR spectrum of phosphate-containing adsorent.

0 ppm

J. Pavlovic et al., J. Serb. Chem. Soc.79 (2014) 1-20

Catalysts prepared using zeolitic tuff

 Clinoptilolite as a matrix of nano-sized oxide particles;

catalytic activity in lignin pyrolysis
Clinoptilolite as a support for super-acid particles

- catalytic activity in esterification of LA

Clinoptilolite-based catalysts

a) Transition metal-containing clinoptilolite can be converted into **catalytically active** material by calcination at 600 °C.

b) Well dispersed, fine nano-oxide particles formed by calcination.

c) NiO, Cu_2O , ZnO

N. Rajic et al, Appl. Surf. Sci. 257, (2010)1524-1532 ; N. Rajic et al, J. Phys. Chem Solids 72 (2011) 800-803

N. Rajic et al., J Phys Chem Solids 72 (2011) 800-803

Composition of the organic phase from the pyrolysis reaction.

N. Rajic et al., Micropor Mesopor Mater 176 (2013) 162-167

Esterification of LA with primary alcohols

Sulfated metal oxides (solid superacids)

Oxides	Calcination T, oC	Hammett acidity (Ho)
SO_4 / SnO_2	550	-18
SO ₄ /ZrO ₂	650	-16.1
SO_4 /Ti O_2	525	-14.6
SO4 / Al2O3	650	-14.6
SO_4 /Fe ₂ O ₃	500	-13.0

K. Arata, Green Chem. 11 (2009) 1719-1728.

Acidity: still under investigation!

A. Clearfield et al., Catal Today 20 (1994) 295-312

-H

K. Arata, Green Chem. 11 (2009) 1719-1728

Acidity measurements

Sample	Acidity, mmol/g
HCLI	0.024
SO_4 - SnO_2 - CLI	0.141
SO_4 - SnO_2	0.302

Catalytic test results

Antimicrobial activity

•Gram- positive: ✓ Staphylococcus aureus, DSM 799)

•Gram-negative: ✓ Escherichia coli (DSM 498) isolates of E. coli from the waterborne in Serbia ✓ Acinetobacter baumannii (EU clone I and II)

Antibacterial activity against *E. coli* and *S. aureus*

		Cı	ı-Cli		Zn-Cli	Ag-Cli	
Bacteria	Medium		Reduction (%) for diff			ferent time (h)	
		1	24	1	24	1-24 h	
E. coli	Real effluent	40.1	93.5	8.09	95.1	100	
DSM 498	Synthetic water	19.4	94.9	6.27	93.9	100	
S. aureus	Real effluent	55.7	86.8	2.79	82.1	100	
DSM 799	Synthetic water	42.8	87.3	3.31	82.3	100	

J. Hrenović, et al., J. Hazard Mat 201 (2012) 260-264.

		Cı	I-Z	Z	in-Z	Ag-Z	
E. coli	Medium	Redi	Reduction (%) for different time (h)				
		1	24	1	24		
Isolate	Real effluent	73.6	100	40.3	100		
I	Commercial water	84.5	100	82.1	100	100	
Isolate	Real effluent	60.2	100	18.0	100		
II	Commercial water	64.0	100	26.7	100		

J. Milenkovic et. al, Environ Sci Poll Res (2017), pp. 20273-20281

Antibacterial activity against *A. baumanni* (clinical isolates: European Clone I and Clone II)

	Sample	Reduction (%) for different time (h)		
Bactería		Reduction (%) for different time (h) 1 24 100 100 13.0 28.5 100 100 100 100 100 200 100 100 100 100 100 100 100 100 100 100		
	Cu-Cli	Reduction (%) for different time (h)12410010013.028.510010010010010010010.522.0100100		
EUI	Zn-Cli	13.0	28.5	
	Ag-Cli	100	100	
EU II	Cu-Cli	100	100	
	Zn-Cli	10.5	22.0	
	Ag-Cli	100	100	

J. Hrenovic et al, Micropor Mesopor Mat 169 (2013) 148-152.

Novel composite: Ag-Cli/PVC with antibacterial action!

SEM photos of immobilized cells of A. baumannii on the surface of the PVC (left) and the absence of bacterial cells on the surface of the composite material (right)

J. Milenkovic et al., Biofouling 30, 965-973 (2014).

Mechanism of bactericidal activity

Ag L_3 -edge XANES spectrum of Ag-treated A. baumannii (solid black line) and the best linear combination fit (dashed red line) obtained by the reference compounds (Ag-alanine, Ag-cysteine, Ag-imidazole and Ag-citrate)

J. Milenković, et al., manuscript in preparation

SEM photo of the bacterial sample

Results of XANES: • Ag bonding to -SH, -NH and -OH

•Ag-N and Ag-O are the dominant binding types

•Antibacterial mechanism might include bonding of Ag ions to the sites in the outer cell membrane of A. baumannii as well as to the amino acids or DNA in the cells.

S Jevtić et al., Micropor Mesopor Mat 197 (2014) 92-100

Se-containing zeolitic tuff was tested as soil supplements for the cultivation of *Pleurotus ostreatus* mushrooms.

The fungus adsorb the inorganic Se from zeolitic tuff transforming it to a more useful organically bound form.

This research was supported by the Croatian Science Foundation (grant no. IP-2014-09-5656) under the project title "Natural habitat of clinically important Acinetobacter baumannii".

https://www.pmf.unizg.hr/naturaci

