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Microscopic Evolution of Nuclear Equilibrium Shapes

TAMARA NIKŠIc AND DARIO VRETENAR 
Physics Department, University of Zagreb, Zagreb, Croatia

Introduction 
The rich variety of nuclear shapes has been the subject of

extensive experimental and theoretical studies. The variation
of ground-state shapes in an isotopic chain, for instance, is
governed by the evolution of the shell structure of single-
nucleon orbitals. Far from the β-stability line, in particular,
the energy spacings between single-nucleon levels change
considerably with the number of neutrons and/or protons.
This can result in reduced spherical shell gaps, modifications
of shell structure, and in some cases spherical magic num-
bers may disappear. The reduction of spherical shell closure
is often associated with the occurrence of deformed ground
states and, in a number of cases, with the phenomenon of
coexistence of different shapes in a single nucleus. 

In most cases the transition between different shapes in
isotopic or isotonic sequences is gradual, and reflects the
underlying modifications of single-nucleon shell-structure
and the interactions between valence nucleons. In a num-
ber of examples, however, with the addition or subtraction
of only few nucleons one finds signatures of abrupt
changes in observables that characterize ground-state
nuclear shapes. In the last decade the concept of quantum
phase transitions has successfully been applied and investi-
gated, both experimentally and theoretically, in studies of
equilibrium shape changes of nuclei. The understanding
and quantitative description of the evolution of nuclear
shapes, including regions of short-lived exotic nuclei that
are becoming accessible in experiments at radioactive-
beam facilities, necessitate accurate modeling of the under-
lying microscopic nucleonic dynamics. Major advances in
nuclear theory have recently been made in studies of com-
plex shapes and the corresponding excitation spectra and
electromagnetic decay patterns, especially in the frame-
work of nuclear density functionals. 

Nuclear Energy Density Functionals 
Ab initio methods, starting from a microscopic Hamilto-

nian that accurately reproduces nucleon-nucleon scattering
and few-body data, have been very successful in the descrip-
tion of light nuclei up to oxygen isotopes, and large-scale

semi-microscopic shell-model calculations can be per-
formed for medium-heavy and even some heavy nuclei in
the vicinity of closed shells. However, the only compre-
hensive approach to nuclear structure is presently based on
the framework of energy density functionals (EDFs).
Nuclear EDFs enable a complete and accurate description
of ground-state properties and collective excitations over
the whole nuclide chart. No other method achieves compa-
rable global accuracy at the same computational cost, and
it is the only one that can describe the evolution of struc-
ture phenomena from relatively light systems to super-
heavy nuclei, and from the valley of β-stability to the
particle drip-lines [1–3]. 

In practical implementations nuclear EDFs are analo-
gous to Kohn-Sham density functional theory (DFT) [4, 5],
the most widely used method for electronic structure
calculations in condensed matter physics and quantum
chemistry. In DFT a quantum many-body system is
described in terms of a universal energy density functional
that, for a given inter-particle interaction, has the same
functional form for all systems.

The ground-state energy and density of a given system
can be determined by minimizing an EDF with respect to
the 3-dimensional density. The self-consistent Kohn-Sham
scheme introduces a local effective single-particle poten-
tial, such that the exact ground-state density of the interact-
ing system of particles equals the ground-state density of
the auxiliary non-interacting system, expressed in terms
of the lowest occupied single-particle orbitals—solutions
of the Kohn-Sham equations. Kohn-Sham DFT provides
accurate predictions for atoms, molecules, nanostructures,
solids, and solid surfaces. In the nuclear case the many-
body dynamics is represented by independent nucleons
moving in a local self-consistent mean-field potential that
correspond to the actual density and current distributions
of a given nucleus.

The unknown exact nuclear EDF is approximated by
relatively simple functionals of powers and gradients of
ground-state nucleon densities and currents, representing
distributions of matter, spins, momentum, and kinetic
energy. Both relativistic and non-relativistic realizations of
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EDFs are employed in studies of nuclear matter and finite
nuclei. In principle a nuclear EDF can incorporate all
short-range correlations related to the repulsive core of the
inter-nucleon interaction, and long-range correlations
mediated by nuclear resonance modes. An additional func-
tional of the pairing density is included to account for
effects of superfluidity in open-shell nuclei. 

Even though it originates in the effective interaction
between nucleons, a generic density functional is not nec-
essarily related to any given nucleon-nucleon potential and,
in fact, some of the most successful modern functionals are
entirely empirical. Of course it would be desirable to have
a fully microscopic foundation for a universal density func-
tional, and this is certainly one of the major challenges for
the framework of nuclear EDFs [6]. However, even if a
fully microscopic EDF is eventually developed, the param-
eters of that functional will still have to be fine-tuned to
structure data of finite nuclei. This is because data on
nucleon-nucleon scattering and few-nucleon systems, or
bulk properties of infinite nuclear matter, cannot determine
the density functional to a level of accuracy necessary for a
quantitative description of medium-heavy and heavy
nuclei. Until recently the standard procedure of fine-tuning
global nuclear density functionals was to perform a least-
squares adjustment of a small set of free parameters simul-
taneously to empirical properties of symmetric and asym-
metric nuclear matter, and to selected ground-state data of
about ten spherical closed-shell nuclei. A new generation
of semi-microscopic and fully microscopic functionals is
currently being developed that will, on the one hand, estab-
lish a link with the underlying theory of strong interac-
tions—low-energy QCD and, on the other hand, provide
accurate predictions for a wealth of new data on short-lived
nuclei far from stability that are produced at radioactive-
beam facilities. To obtain unique parameterizations, these
functionals will have to be adjusted to a larger data set of
ground-state properties, including both spherical and
deformed nuclei [6–8]. 

To illustrate the universality of the EDF approach to
nuclear structure, all examples presented in this article
have been calculated using a single functional—the relativ-
istic functional DD-PC1 [7]. Starting from microscopic
nucleon self-energies in nuclear matter, and empirical
global properties of the nuclear matter equation of state,
the coupling parameters of DD-PC1 were fine-tuned to the
experimental masses of a set of 64 deformed nuclei in the
mass regions A ≈ 150–180 and A ≈ 230–250. The
functional has been further tested in calculations of

medium-heavy and heavy nuclei, including binding ener-
gies, charge radii, deformation parameters, neutron skin
thickness, and excitation energies of giant multipole
resonances. For the examples considered here, pairing
correlations have been taken into account by employing an
interaction that is separable in momentum space, and is
completely determined by two parameters adjusted to
reproduce the empirical bell-shaped pairing gap in sym-
metric nuclear matter [9]. 

The advantages of using EDFs in the description of
nuclear structure phenomena are evident already at the
basic level of implementation: an intuitive interpretation of
mean-field results in terms of intrinsic shapes and single-
particle states, calculations performed in the full model
space of occupied states (no distinction between core and
valence nucleons, no need for effective charges), and the
universality of EDFs that enables their applications to all
nuclei throughout the periodic chart. The latter feature is
especially important for extrapolations to regions of exotic
short-lived nuclei far from stability for which few, if any,
data are available. 

The Kohn-Sham equations (Schrödinger-like for non-
relativistic functionals, or Dirac-like for relativistic EDFs,
with the Hamiltonian defined as the functional derivative
of the EDF with respect to density) are solved in the intrin-
sic frame of reference attached to the nucleus, in which the
shape of the nucleus can be arbitrarily deformed. The sim-
plest case corresponds to five-dimensional quadrupole
dynamics. Figure 1 displays the self-consistent quadrupole
binding-energy maps of the even-even isotopes 72−78Kr in
the β−γ plane, calculated with the relativistic Hartree-
Bogoliubov (RHB) model [3]. The map of the energy sur-
face as function of quadrupole deformation is obtained by
imposing constraints on the axial and triaxial mass quadru-
pole moments. The moments can be related to the polar
deformation parameters β and γ. The parameter β is simply
proportional to the intrinsic quadrupole moment, and the
angular variable γ specifies the type and orientation of the
shape. The limit γ = 0° corresponds to axial prolate shapes,
whereas the shape is oblate for γ = 60°. Triaxial shapes are
associated with intermediate values 0° < γ < 60°. For each
surface shown in Figure 1, all energies are normalized with
respect to the binding energy of the absolute minimum, and
the color code refers to the energy of each point on the sur-
face relative to the minimum. 

Neutron-deficient nuclei in the mass region A ≈ 70−80
are predicted to display coexisting prolate and oblate
shapes, as a result of competing large shell gaps for both
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types of deformations at proton/neutron numbers 34, 36,
and 38. The calculated maps indicate that the four Kr
isotopes are rather soft with respect to both β and γ degrees
of freedom. The occurrence of nearly degenerate minima
raises the question of their stability against dynamical
effects of collective correlations [10]. 

Collective Correlations 
Maps of the energy surface as function of quadrupole

deformation nicely illustrate the variation of ground-state
shapes governed by the evolution of shell structure, but
they are not observables and cannot directly be compared
to data. A static self-consistent mean-field solution of the
nuclear Kohn-Sham equations in the intrinsic frame is
characterized by symmetry breaking—translational, rota-
tional, particle number, and can only provide an approxi-
mate description of bulk ground-state properties such as
masses and radii. When considering applications, an
important challenge for the framework of EDF is the sys-
tematic treatment of dynamical effects related to restora-
tion of broken symmetries and fluctuations in collective
coordinates. To calculate excitation spectra and transition
rates, it is necessary to project from the mean-field solution
states with good quantum numbers—angular momentum,
particle number, and also take into account fluctuations
around the mean-field minimum. The corresponding

correlation energy, that is, the energy gained by symmetry
restoration and quantum fluctuations, can reach several
MeV for a well-deformed configuration. 

Collective correlations are sensitive to shell effects, dis-
play pronounced variations with particle number and,
therefore, cannot a priori be incorporated in a universal
EDF. The Kohn-Sham EDF framework has to be extended
to take into account collective correlations. Symmetry res-
toration and fluctuations of quadrupole deformation can be
treated simultaneously by mixing angular-momentum and
particle-number projected states that correspond to differ-
ent intrinsic configurations. The most effective approach
for configuration mixing calculations is the generator coor-
dinate method (GCM), with multipole moments used as
coordinates that generate the intrinsic wave functions.
When used on top of the self-consistent mean-field
solution in the intrinsic frame, this method provides an a
posteriori treatment of collective correlations. 

In recent years several accurate and efficient models,
based on microscopic energy density functionals, have
been developed that perform restoration of symmetries
broken by the static nuclear mean field, and take into
account quadrupole fluctuations. Many interesting
phenomena related to shell evolution have been investi-
gated by employing the angular-momentum and particle-
number projected GCM with the axial quadrupole moment
as the generating coordinate, and with intrinsic configura-
tions based on non-relativistic or relativistic EDFs. How-
ever, while GCM configuration mixing of axially
symmetric states has routinely been employed in structure
studies, the application of this method to triaxial shapes
presents a much more involved and technically difficult
problem. Only the most recent advances in parallel com-
puting and modeling have enabled the implementation of
microscopic models, based on triaxial symmetry-breaking
intrinsic states that are projected on particle number and
angular momentum, and finally mixed by the generator
coordinate method. Applications to heavy nuclei, however,
are still computationally very demanding and time-con-
suming [11–13]. 

In an approximation to the full GCM approach to five-
dimensional quadrupole dynamics, a collective Hamilto-
nian can be formulated that restores rotational symmetry
and accounts for fluctuations around the triaxial mean-field
minima. The dynamics of the five-dimensional Hamilto-
nian for quadrupole vibrational and rotational degrees of
freedom is governed by the seven functions of the intrinsic
deformations β and γ: the collective potential, the three

Figure 1. Self-consistent binding-energy maps of the even-
even isotopes 72-78Kr in the b-g plane (0° £ g £ 60°).
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vibrational mass parameters: Bββ, Bβγ, Bγγ, and three
moments of inertia for rotations around the principal axes
[14–16]. These functions are determined by constrained
microscopic mean-field calculations using a given nuclear
EDF. Starting from self-consistent Kohn-Sham orbitals, the
corresponding occupation probabilities and energies at each
point on the energy surfaces shown in Figure 1, the mass
parameters and the moments of inertia are calculated as
functions of the deformations β and γ. The diagonalization
of the resulting Hamiltonian yields excitation energies and
collective wave functions that can be used to calculate vari-
ous observables, such as electromagnetic transition rates. 

In Figure 2 we plot the corresponding low-energy spec-
trum of collective states of 74Kr in comparison with avail-
able data [10]. The calculated spectrum is in very good
agreement with experiment, not only for the ground-state
band (yrast states) but also for structures above the yrast.
The collective states are completely determined by the
DD-PC1 energy density functional plus a separable pairing
interaction, and the transition probabilities are calculated in
the full configuration space using the bare value of the pro-
ton charge [17]. The structure of low-lying states in the
neutron-deficient krypton isotopes is characterized by the
coexistence of different shapes. For 74Kr, in particular, the
two lowest 0+ states exhibit a pronounced mixing of oblate
and prolate configurations. This mixing can be attributed to
the softness of the potential with respect to the γ-deforma-
tion parameter. Even though the ground state is not prolate,

the collective functions of the other yrast states are concen-
trated close to the γ = 0° axis, and the prolate character of
these states is also reflected in the calculated spectroscopic
moments, in good agreement with the experimental values. 

Shape Phase Transitions 
Phase transitions in equilibrium nuclear shapes corre-

spond to first- and second-order quantum phase transitions
(QPT) induced by variation of a non-thermal control param-
eter (number of nucleons) at zero temperature [18–20].
Theoretical studies have typically been based on phenome-
nological geometric models of nuclear shapes and poten-
tials, or algebraic models of nuclear structure, but recently
several microscopic analyses of shape QPT have been
reported, that start from nucleonic degrees of freedom. A
phase transition is characterized by a significant variation
of one or more order parameters as functions of the control
parameter. Even though in systems composed of a finite
number of particles phase transitions are actually smoothed
out, in many cases clear signatures of abrupt changes of
structure properties are observed. There are basically two
approaches to study QPT: first, the method of Landau,
based on potentials and, second, the direct computation of
order parameters. In the case of atomic nuclei, however, a
quantitative analysis of QPT must go beyond a simple
study of potential energy surfaces. This is because poten-
tials or, more specifically, deformation parameters that
characterize potential energy surfaces, are not observables,
and can only be related to observables by making very spe-
cific model assumptions. Both approaches can be com-
bined in a consistent microscopic framework, based on
nuclear EDFs, that can be used for calculation of observ-
ables related to quantum order parameters [21–23]. An
order parameter is a measure of the degree of order in a
system. As a normalized quantity that is zero in one (sym-
metric) phase, and non-zero in the other, it characterizes
the onset of order at the phase transition [24]. 

The two most studied classes of nuclear shape phase
transitions, both theoretically and experimentally,
correspond to a second-order QPT between spherical and
γ-soft shapes, and a first-order QPT between spherical and
axially-deformed shapes. The former is a phase transition
in one degree of freedom—the axial deformation β. The
critical point of phase transition can also be related to a
dynamical symmetry: in this case E(5) [25], and the exper-
imental realization of this critical-point symmetry was first
identified in the spectrum of 134Ba [26]. The second type of
shape transitions, between spherical and axially deformed
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and interband B(E2) values (in e2 fm4).

D
ow

nl
oa

de
d 

by
 [

D
ar

io
 V

re
te

na
r]

 a
t 1

1:
40

 1
2 

D
ec

em
be

r 
20

11
 



feature article

18 Nuclear Physics News, Vol. 21, No. 4, 2011

nuclei, is more commonly encountered and involves two
degrees of freedom—the deformations β and γ. The critical
point of this phase transition, denoted X(5) [27], does not
correspond to a dynamical symmetry in the usual sense.
Nevertheless, for the particular case in which the β and γ
degrees of freedom are decoupled, an approximate analytic
solution at the critical point of phase transition can be
expressed in terms of zeros of Bessel functions of irrational
order. Evidence for the empirical realization of X(5) phase
transition was first reported for 152Sm and other N = 90 iso-
tones [28]. 150Nd, in particular, is considered to be a good
example of empirical realization of the X(5) model for the
critical point of phase transition [29]. 

In Figure 3 we plot the RHB quadrupole binding-
energy maps of the transitional even-even nuclei
148,150,152Nd, calculated using the functional DD-PC1.
These plots illustrate the increase of prolate deformation
with the number of neutrons, from spherical shapes in the
region near the neutron shell N = 82 (not shown in the
figure), to the strongly deformed 154Nd. The deformed Nd
isotopes display prolate minima, and a pronounced feature
of shape evolution is the broad flat minimum in 150Nd, that
extends in the interval 0.2 £ β £ 0.4. In this region the
potential displays a parabolic dependence on γ for γ £ 30°,
and then flattens out towards the oblate axis. The flat bot-
tom of a potential has been considered a signature of possi-
ble shape phase transition because it allows for fluctuations
of collective variables. The self-consistent single-nucleon
states that correspond to each point on the energy surface
are used to calculate the parameters that determine the col-
lective Hamiltonian, yielding the excitation energies and
collective wave functions. For all three Nd nuclei the spec-
tra and transition probabilities reproduce available data
and, for 150Nd in particular, the low-energy spectrum is in
excellent agreement with the predictions of the X(5) model
for the critical point of first-order phase transition. 

Signatures of phase transitions characterize the evolu-
tion of both excitation spectra and order parameters. To
verify that the collective Hamiltonian based on the func-
tional DD-PC1 predicts the shape phase transition pre-
cisely at the isotope 150Nd, we also need to consider the
neighboring nuclei 148Nd and 152Nd. This is illustrated in
the two upper panels of Figure 4 where, for the yrast states
of these three isotopes, we compare the B(E2; L → L-2)
values and excitation energies calculated using the
collective Hamiltonian, with the corresponding values pre-
dicted by the X(5) model, and with the limit of axially-
deformed rigid rotor. Obviously the E2 rates and excitation

energies for 150Nd are closest to those calculated from ana-
lytic expressions corresponding to the X(5) model for the
phase-transitional point. 148Nd does not differ very much
from the X(5) limit, whereas the yrast states of 152Nd indi-
cate that this nucleus is already closer to a deformed rotor.

Figure 3. Self-consistent binding-energy maps of 148,150,152Nd
in the b-g plane (0° £ g £ 60°).
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We emphasize, however, that the physical control parame-
ter – the nucleon number, is not continuous and thus in
general a microscopic calculation cannot exactly reproduce
the point of QPT. 

In the lowest panel of Figure 4 we analyze an example
of calculation of observables that can be related to order
parameters. The phase transition is between coexisting dif-
ferent shapes in the two lowest 0+ states: the ground state

01
+ and the excited state 02

+. It can be quantified in terms of
a model-independent quadrupole shape invariant. For the
n-th 0+ state, the invariant q2(0n

+) is defined by the relation: 

It is proportional to the square of the effective β-deforma-
tion of the state 0n

+. In principle, transitions from this state
to all 2+ states are included in the sum but in practice a
truncated sum suffices [30]. For the lowest 0+ states a good
approximation can already be obtained by truncating the
sum to transitions to the first three or four lowest 2+ states.
In most cases, of course, data on B(E2) values will only be
available for a few lowest 2+ states. Figure 4 shows the
quadrupole shape invariants q2 of the ground state 01

+ and
the excited state 02

+ as functions of the neutron number.
k = 4 means that transitions to the four lowest 2+ states
have been included in the sum over B(E2) values. A very
interesting result of this calculation is that the two shape
invariants cross precisely between 150Nd and 152Nd. On the
right hand side of the lowest panel in Figure 4 we also plot
the difference between the two shape invariants, and this
quantity clearly reflects the phase transition to the axially-
deformed rotational nucleus 152Nd. As a function of the
control parameter (number of neutrons), this difference
displays a behavior that is characteristic for a first-order
transition. Even though the calculation has been carried out
for a finite number of paricles, the phase transition does not
appear to be significantly smoothed out by the finiteness of
the nuclear system. 

Evolution of Non-Axial Shapes in Pt Isotopes 
Most deformed nuclei display axially symmetric pro-

late ground-state shapes, but few areas of the nuclide chart
are characterized by the occurrence of non-axial shapes.
One example is the A ≈ 190 mass region, where both
prolate to oblate shape transitions, and even triaxial
ground-state shapes have been predicted. Figure 5 shows
the self-consistent RHB quadrupole binding energy maps
of the even-A 190−196Pt isotopes in the β − γ plane, calcu-
lated with the DD-PC1 energy density functional. The
energy surfaces are γ-soft, with shallow minima at γ ≈ 30°.
In general the equilibrium deformation decreases with mass
number and, proceeding to even heavier isotopes, one finds
that the energy map of 198Pt has also a non-axial minimum,
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excitation energies (middle panel) for the yrast states of
148Nd, 150Nd, and 152Nd, calculated with the collective
Hamiltonian based on the functional DD-PC1 and
compared to those predicted by the X(5) model for the
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model. Evolution of the shape invariants q2 for the first
two 0+ states, as functions of neutron number in Nd
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whereas 200Pt displays a slightly oblate minimum, signal-
ing the shell-closure at the neutron number N = 126. 

The formation of deformed triaxial minima can be
related to the occurrence of gaps or regions of low single-
particle level density around the Fermi surface at γ ≈ 30°,
and this is reflected in the low excitation energies of the γ-
vibrational bands. As an example, in the upper panel of
Figure 6 we plot the neutron single-particle levels of 192Pt
as functions of the deformation parameters along a closed
path in the β − γ plane. Solid curves correspond to levels
with positive parity, and short-dashed curves denote levels
with negative parity. The long-dashed (yellow) curve cor-
responds to the Fermi level. The panels on the left and right
display prolate (γ = 0°) and oblate (γ = 60°) axially-sym-
metric single-neutron levels, respectively. In the middle
panel the single-neutron levels are plotted as functions of γ
for a fixed value of the axial deformation β = 0.175, at the
position of the equilibrium minimum of the binding energy
surface (Figure 5). The formation of a gap between the
neutron single-particle levels in the vicinity of the Fermi
surface around γ ≈ 30° is clearly seen in this diagram, and a
similar effect is found in the plot of proton single-particle
levels. The corresponding low-energy spectrum of 192Pt,
obtained from the collective Hamiltonian, is shown in the
lower panel of Figure 6. The calculated ground-state and

γ-vibration bands are compared to the corresponding
sequences of experimental states [31]. Both the theoretical
excitation energies and B(E2) values are in agreement with
data. In particular, one might notice the excellent result for
the predicted excitation energy of the band-head of the
γ-band, as well as the good agreement with the experimen-
tal B(E2) values for transitions between the γ-band and the
yrast band. This result indicates that the DD-PC1 potential
has the correct stiffness with respect to the γ-degree of
freedom. A similar quantitative agreement with data is also
obtained in the calculation of low-energy spectra for the
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Figure 6. Neutron single-particle levels in 192Pt as
functions of the quadrupole deformation parameters b and
g (upper panel; see text for description). In the lower panel
the resulting collective low-energy spectrum (left) is
compared with the to data (right) for the excitation
energies and, intraband and interband B(E2) values (in
Weisskopf units).

Figure 5. Self-consistent binding-energy maps of the even-
even isotopes 190-196Pt in the b -g plane (0 £ g £ 60°). 
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other Pt isotopes for which the energy maps are shown in
Figure 5. 

Conclusions 
Structure phenomena related to shape evolution in

atomic nuclei continue to be a very active research topic in
low-energy nuclear physics. Dedicated radioactive-beam
facilities, in particular, provide new and intriguing data on
shapes in regions of exotic nuclei far from stability. Key
questions addressed by experimental programs also require
developing advanced theoretical methods. It is important to
formulate and implement microscopic models, based on the
underlying dynamics of low-energy strong interactions, that
can be employed to quantitatively describe the rich variety
of shape phenomena, and the resulting complex excitation
spectra and decay patterns across the entire chart of
nuclides. Such a framework is provided by nuclear energy
density functionals (NEDFs). By employing a single EDF,
parameterized with a small set of universal constants, in this
article we have presented a quantitative analysis of shape
coexistence in neutron-deficient Kr isotopes, a ground-state
shape phase transition in N ≈ 90 Nd nuclei, and the appear-
ance of triaxial shapes in Pt isotopes. The description of
these apparently diverse phenomena in a single microscopic
framework, the interpretation of complex spectra in terms
of shapes and the underlying evolution of shell structures,
and the quantitative agreement with data, illustrate the uni-
versality of the EDF approach to nuclear structure. 
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