926

JOURNAL OF THE ATMOSPHERIC SCIENCES

The Critical Richardson Number and the Ratio of the Eddy Transport
Coefficients Obtained from a Turbulence Closure Model

TETSUNT YAMADA

Geophysical Fluid Dynamics Program,! Princelon Universily, Princelon, N. J. 08540
(Manuscript received 3 September 1974, in revised form 5 February 1975)

ABSTRACT

A turbulent closure model is analyzed under the condition that the turbulent flow is steady in its ensemble
average and both the advection and diffusion terms, i.e., third moments of turbulence, are neglected in the
turbulent Reynolds stress and heat flux equations. The critical flux Richardson number is defined as a
limiting value beyond which physically correct solutions are no longer possible. All the turbulence moments
are suppressed completely when the Richardson number exceeds the critical value. The validity of making
such an assumption is tested against the numerical results which were obtained by utilizing a more complete
set of equations.

The critical flux Richardson numbers of 0.18~0.27 are obtained from the different proposed empirical
constants. The ratio of the eddy transport coefficient of heat to that of momentum have values of 0.5~1.2
at the critical condition of stability. A review is made to clarify the differences between the present model
and the earlier works of Ellison, Townsend, and Arya. )

1. Introduction

A critical condition for the transition from turbulence
to laminar flow in the case of strong stratification is a
controversial issue. The existence of such transition ex-
pressed in terms of the Richardson number is fairly well
established from laboratory experiments (Arya and
Plate, 1969; Webster, 1964) as well as field observations
(Lyons et al. 1964; Oke, 1970).

The earlier theories have created: controversial argu-
ments concerning the behavior of the ratio of the eddy
transport coefficients « (defined as Kp /K, where Ky
and Ky are, respectively, the eddy diffusivity for heat
and the eddy viscosity for momentum) and the pre-
dicted values of the critical Richardson number.

Ellison (1957) showed in his analysis that « decreased
with increasing Richardson number. Townsend (1958),
on the contrary, indicated that « increased with stability
and that the critical gradient Richardson number was
~0.08, whereas such a cutoff value of stability was not
obtained by Ellison. These contradictions are due to the
assumptions they were required to make on the be-
havior of the second moments of turbulence in order to
close the set of equations for turbulence.

A turbulence closure model presented here avoids
making such direct assumptions on the second mo-
ments of turbulence. But to establish a set of equations
from which the second moments of turbulence can be
derived, it is, of course, necessary to introduce several

1 Support provided through Geophysical Fluid Dynamics
Laboratory/NOAA, under Grant E22-21-70(G).

hypotheses to close the turbulent Reynolds stress and
heat flux equations. Among these the most crucial hy-
pothesis is that of Rotta (1951) which concerns the
modeling of the correlations between the fluctuating
pressure and other fluctuating variables such as wind,
temperature and water vapor.? Other assumptions on
the dissipation terms include Kolmogorov’s (1941) hy-
pothesis of local, small-scale isotropy. The third mo-
ments (triple correlations) are modeled as down-gradi-
ent type diffusion® terms which, however, are neglected
in this paper.

2. Present model

The derivation of the present model was described in
Mellor (1973, henceforth referred to as I) and was
utilized as one of the three models in simulating the di-
urnal variation of the planetary boundary layer [Mellor
and Yamada (1974), henceforth referred to as II].
Therefore, the derivation is discussed only briefly in
order to indicate the modeling assumptions which have
slightly more generalized forms than the ones used in I.

The most crucial assumption is that by Rotta (1951).

The term
ou; au,-
? __+_ )
dx; dx;
? Rotta’s original hypothesis was only for the pressure-velocity
gradient correlation.

8 See Mellor (1973) for a detailed discussion of the modeling
assumptions involved.
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which is referred to as the “energy redistribution term,”

is modeled as
3l \ ’ 4 0x;
+Cs8 (giﬁ—l-g];@—%ﬁijgk;k—@),

ou;
P< 1

dx; O Ox;
where the overbars indicate ensemble averages, and u;,
0 and p are the parts fluctuating from the corresponding
mean quantities, U;, © and P, respectively; 8= — (3p/
dT)p/p is the thermal expansion coefficient, , gi=(0,0—g)
is the acceleration of the gravity, and qﬁ—uI is the total
turbulent kinetic energy. The length scale /; and the
coefficients C; and C, are determined empirically. In a
similar fashion

00 q —
p—= __u10+C3ng80
Bx] 3l2

where /; and C; are another length scale and a coefficient
which are determined empirically (in I it was assumed
that C2=C3=0).

The modeling assumptions for the dissipation terms
are the same as in I. Thus it is necessary only to mention
that two additional length scales, A; and A., are intro-
duced and again they are determined empirically.

Under the condition that both advection and diffusion
terms (third moments) are negligible, the resultant
Reynolds stress and heat flux equations® (after the
boundary layer approximation is applied) are:

— . q &\ 2¢
w?: 28g(1—2Cy)wd——| wh—— ) ——-=0 @)
3l 3/ 3In
— — U — g
ww: — (w—C1¢)—+Bg (1 —Co)ud ——uw=0 2)
93 3l
. _9408 _9U gq_
u: —yw——wh———uf=0 3
03 9z 3l2
. _00 — g
wh: —w—+Bg(1—-C3)02——wbh=0 @)
9z 3l2
— 00 q_
#: —wh———F=0 )
02 Az
_oU — ¢
¢*: —uw—-+Lgwd——=0. (6)
9z Al

For convenience, we assume that all length scales are
proportional to each other, i.e.,

l], lz, Al, A2= (A 1,/1 Q,BI’BQ)Z.

4 ww, uh, and @U/dz should be interpreted as vector quanti-
ties of stress, heat flux and wind shear, respectively.
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As will be seen in the next section the expressions for the
critical flux Richardson number and the ratio of the
eddy transport coefficients are independent of all the
length scales as long as the proportionality relations
hold among them. Proportionality constants 41, 4, By,
B, for the present analysis are assumed to be independ-
ent of the stratification. The numerical values for the
empirical constants are obtained from laboratory ex-
periments under neutral conditions as discussed in I.

All mean quantities are treated as known and the
solutions are expressed in the terms of an appropriate
stability parameter and ¢. The flux Richardson number
defined as

Bguwh

Ri=——,
uw(3U/9z)

™

seems the most appropriate stability parameter in the
analysis.

From the turbulence energy equation (6) and the
definition of the flux Richardson number (7) we obtain
Ri=1—¢/p where e=¢*/A,; is the dissipation term and
p=—uw(dU/3z) is the shear production term. There is
no doubt that both e and p approach zero as the stabil-
ity increases. The ratio ¢/p, however, may take a finite
limiting value different from zero. To determine such a
value is equivalent to predicting the critical Richardson
number.

3. Critical flux Richardson number and the eddy
transport coefficients

After some algebraic manipulation the solutions of the
set of equations (1) to (6) may be expressed as:

aU\? _
q2=Bll2<———> (1—R)Sxy (8a)
0z
1 4, 1 R
w2—|:——2———6——(1 —2Cy) :|q2 (8b)
3 B1 1 A
—ww=1g5,(0U/ 33) (8¢)
—w0=1¢5,(00/92) (8d)
— _ _ 803U
—uf=—34:L(Sy+Sy)—— (8e)
dz 09z
62=By2 Sy (00 02)". (8f)
The terms Sy and Sy are given by
~ (Rie—Rp)(Ru—Ry)
SM=CM s (9&)
(1—Rp)(Rp—Ry)
~ Rfc_Rf
Su=Cp ’ (9b)
1—-R;
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Fic. 1. Stability functions Su and Sy as functions of Ry.
Empirical constants are from Mellor (1973).

and Ry, Rs1, Res, Car, Cy are numerical constants which
are determined explicitly from the previously cited em-
pirical constants according to the following expressions:

Ree=I1/E,, (10a)
(Riy,Rez) = (Es/Es,E/E), (10b,c)
A1 EE,
Cyu=— , (10d)
B; E;
A2
Cy=—1UF;, (10e)
1
_where
E1~_— Bl—6A 1

E2=Bl+ 12/1 1(1‘—C2)+382(1—C,;)
E3=B,(1-3C,)—64, .
Ei=B1(1-3C)+124:(1—C:)+94.(1—Cy)
Ey=B1+34,(1—Cy)+3B:(1—C5)

Fig. 1 shows S,; and Sy vs Ry. The curve of Sy crosses
the R axis at R¢, and R;;. The lines R;=R;, and 1.0
(not shown) are two asymptotes. On the other hand, the
behavior of Sy is much simpler than Sy in that it de-
creases monotonically with increasing Ry and is zero at
Ri=R¢. The line R;=1.0 (not shown) is an asymptote.

The critical value of R; is determined as a limiting
value beyond which physically correct solutions of (8)
are no longer possible. The critical value (from Fig. 1)
is given by (10a) which satisfies all the requirements

2, 2, w?, 022 0.

Beyond the critical value of Ry all the turbulence mo-
ments are suppressed completely. In other words, the
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stability functions S, and Sy are assumed to be zero
when Ry exceeds Ry, as shown in Fig. 2. In order to see
the validity of making such an assumption a test is made
against the numerical results which were obtained from
a more complete model. The model chosen here is the
one labeled as level 4 model in paper IT where the hier-
archy of the turbulent closure model was discussed. The
present model is equivalent to the level 2 model there.
The level 4 model retains the tendency terms as well as
diffusion (third moments of turbulence) terms in the
Reynolds stress and turbulent heat flux equations. The
values of Sy and Sy for the level 4 model are computed
diagnostically from a numerical result obtained in simu-
lating a diurnal variation of the atmospheric boundary
layer as described in II. The formulas used are

_ —uw N —wl

Sy=——"",  Sp=———"—
lq(0U/93) Ig(600/92)

which are equivalent to Egs. (8c) and (8d), respectively.
The results are shown in Fig. 2 (Mellor’s values were
used for the empirical constants).

The large variations in the values obtained by the
level 4 numerical model in I are primarily due to the
nonstationarity of the variables which are subjected to
a diurnal oscillation. Additional scatters might be due to
the numerical truncation errors in evaluating the verti-
cal gradients of wind and temperature which are re-
quired to compute the stability functions Sy and Sg.

It is interesting to note that Sy and Sy computed by
the level 4 model did not vanish (although their values
are quite small) even when the flux Richardson number
exceeded its critical value determined in the present
analysis. A possible explanation for this is sought in the
effect of the diffusion terms (third moments) in addition
to the nonstationarity of "the variables as mentioned
above. A recent numerical model simultation of the
Wangara experiment (Clarke e al., 1971) by Yamada
and Mellor (1975) found that during the cooling period
of a day the diffusion terms were not negligible in the
balance equation for the total turbulent kinetic energy
equation. Thus the turbulent energy could be trans-
ferred through the diffusive processes into the regions
where the flux Richardson numbers are even greater
than the critical value. Lyons ef al. (1964) and Oke
(1970) reported from the field observations that no
single value could be determined for the flux Richardson
number by which a distinct transition from turbulence
to laminar flow occurred, although turbulence intensi-
ties decreased sharply when Ry exceeded .

Thus the difference between the present stability
functions and those in more complete models (or for the
real atmosphere) must be taken into consideration es-
pecially when the flux Richardson number exceeds its
critical value. Mellor and Durbin (1975) appear to have
successfully overcome this difference by including the
kinematic viscosity in their numerical modeling of the
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F1c. 2. Comparisens of the proposed stability functions Su and Sy with those computed
diagnostically from a more complete model (level 4 model) in Mellor and Yamada (1974).

Empirical constants are from Mellor (1973).

oceanic thermocline where the same stability functions
as presented here are utilized.
From (8c) and (8d), respectively, we have

Ky= quM and Kuy= quH,

where K and Ky are eddy kinetic viscosity and eddy
thermal diffusivity, respectively. It follows from the dis-
cussion given for Sy and Sp that Ky and Ky vanish
when R exceeds the critical value.

Another interesting quantity is the ratio of Ku/Ku
which may be expressed as

Ky CygRp—R;

a=——=—
Cy Ru—R;

o (11)

An important feature arises from the fact that the com-
mon factor in Kx and K which vanishes at Rg= Ry, is
absent in this expression. Therefore, o takes a finite
value at the critical condition. This point will be con-
sidered again in discussing Ellison’s model in Section 5.
Fig. 3 shows a as a function of R; where the set of con-
stants by Mellor is utilized. Also plotted are the diag-
nostically computed K /K from the numerical results
which are obtained by utilizing the level 4 model as al-
ready mentioned in the discussion for the stability func-
tions Sr and Sy.

Since Ri= (Kn/Ku) Ri and Ky/Kyr is given by Eq.
(11), R; may be expressed in terms of R;, where R; is
the gradient Richardson number defined as

R:ﬂg@@/ 02)
T (0U/az)e

If may be shown that R¢ and R; are related by a quadra-
tic equation from which the solution may be expressed as

1 4.F; A.Es Ay EsFEs—2E,Ey
Re=~ {Ri —[Rﬁ+2—— — R
2 A1E4 A2E5 A2 E52

A1E3\* 7’
(G2 1)
AsE5
where Ey, Es, Es, E; are composite functions of empiri-
cal constants already defined in Section 3. The quantity

inside the square root is shown to be positive definite
when Ry, <Ry which is the present case as seen in Fig. 1.

4, Discussion on R, determined from different
proposed constants

The equations presented in the previous section are
by no means new. There are several models which have
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Tic. 3. The ratio Ky /K, of the eddy transport coefficients, as a function of Ry.
Crosses are as in Fig. 2 but for a.

utilized the complete forms of Egs. (1)-(6). This section
reviews these models and discusses their differences
from the present model. Donaldson (1973) derived a set
of equations quite similar to that of the present analysis.
However, it was not possible to relate the empirical con-
stants of his model to the present one since Donaldson
modeled the dissipation terms differently from the rest
of the models discussed here. Lewellen and Teske (1973)
utilized a slightly generalized form of Donaldson’s
model, whose length scales are related to the present
ones by

1111
(lly l27 Ay, AZ)@<—’ ) .'>>"
3 3a b bs
where the numerical values for the proportionality con-
stants are

(a, b, s)=(0.75, 0.125, 1.8).

The next model discussed here® is the one proposed by
Deardorff (1973). It was utilized in modeling the sub-
grid-scale turbulence in a three-dimensional numerical
computation. He also used the complete set of Eqgs.
(1)-(6). A comparison of the length scales in the two

5 Lumley and Khajeh-Nouri (1974) proposed a more sophis-
ticated closure model than the one presented here. Thus it was
not possible to identify the empirical constants needed to com-
pute Ry, and «. Monin’s model (1965) was similar to the present
one except that the effect of a boundary was added to Rotta’s
hypothesis (but (y=C:=C.=0). Therefore, « in his model was
included in Fig. 4.

models reveals the relations

VZ V2 V2 V2
(lla l2: A17 AZ)@(—_—: T T —>A;
3Cy 3C, Cg Cy

where A is the numerical grid size. The empirical values
suggested by Deardorff are

(Cur, Cs, C, Co)= (4.13, 4.13, 0.70, 0.42).

F The critical flux Richardson number Ry, as seen from
Eq. (10a) for a closure model, can be determined ex-
plicitly from the set of empirical constants alone. Table
1 summarizes Ry, and also indicates the empirical con-
stants identified above. The model labeled “Present” in
Table 1 utilized the same set of empirical constants as
in Mellor for 4;, 4., Bi, B,. However, C;=3% was
adopted after Deardorff (1973), and the value of 1% for
C, was determined tentatively from the analysis by
Frank Lipps (GFDL Princeton, private communica-
tion). The numbers in the parentheses in Table 1 are
the ratios to By, such as 41/B;, A/ B, etc. It is inter-
esting to note that Ry and o depend only on the ratios
(but not on the values) of the empirical constants as
seen from Eqs. (10a) and (11), respectively. The evalua-
tions of Ry, according to the models by Ellison, Town-
send and ‘Arya will be given in the following discussion.
Their values of Ry, are included in Table 1 for compari-
son. The values of 0.2~0.3 for R, were obtained by all
models except that Townsend gave a slightly higher
value of 0.5.



May 1975

TETSUJI YAMADA

931

Empirical Constants Equation and
Rec a pti used
Author A, Az B, B, C‘ C2 (:3 to obtain Ry
Ellison (1957) 2 €ani3e) with
M/ T )@/ w%)=4
Townsend (1958) 5 Eqn.(15)
Eqn(17) with
Arya (1972) A5~.4 Fo/Foe=.3~6
G.=2~3
beardortt 1973 15 015 405 6.8 .
ear LI
ot 1973) 18 (02840284 [y (679 |2 © 3
Mellor 1973 78 79 158 056
e ‘
or (1973] 2 (0520)(0527) (] [533) °o 0
Eqn.{10q)
Lewellen & 24 561 747 13.45 7.476
Teske 1973) : (0417) (056) (1) [.556) 0 0 0
3 1
Present 27 Same as Mellor .056 0 3

TasLE 1. Predicted critical flux Richardson number, Re.

5. A review of the earlier works of Ellison, Town-
send and Arya

A comparison of the present closure model with the
earlier works by Ellison (1957), Townsend (1958) and
Arya (1972) will be given here.

Townsend utilized only Egs. (5) and (6) in Section 2
because these equations did not require usage of Rotta’s
hypothesis. Ellison utilized the equation of the vertical
heat flux which contained a correlation between pressure
and a vertical gradient of temperature (which was in-
cluded in the dissipation term). Arya (1972) adopted
Rotta’s hypothesis in modeling the fluctuating pressure-
wind shear correlation term in the equations of uw [Eq.
(2)]. A close examination of each work will follow.

Ellison (1957) utilized the vertical heat flux equa-
tions (4), the equation for temperature variance (5), and
the turbulent kinetic energy equation (6) with C.=
C;=0. He obtained the following expression for a:

Rfc_Rf
=q—, (12)
R (1—Ry)?
where
Tl q2 —1
Rch (1-'——‘ _-_-) (13&)
T2 w?
1 T3 gzw2
=~ — , (13b)
2 Ty (ww)?

and Ty, T, T'; are dissipation time scales for 62, ¢, wh
respectively; 7'y and T, are related to the present length
scales as

(AyAs) & 2¢(T,,Th). (14)

The expression (13a) must be modified, as pointed
out by Arya (1972), if Ty/T and/or ¢2/w? are functions
of R;. Indeed, if ¢*/w? is assumed to be given by Eq.
(8b), but 71/T: is assumed to be constant, it is found
that (13a) is equivalent to (10a) [relation (14) is util-
ized to replace I’s for the present length scales].

Therefore, Ellison would have obtained the same cri-
tical value as we have determined if he had treated

q%/w* as stability dependent. The two analyses have in-
deed utilized the same criterion to obtain the critical
value. Ellison required that Kz >0 and we postulated
that #,> and 62 are non-negative. The latter requires
Su>0 which is equivalent to K;>0 from the relation
KH = l(]SH as seen in (8d)

Ellison’s analysis also differs from the present one in
regard to the predicted behavior of a. Ellison’s a de-
creases monotonically with increasing stability and van-
ishes at Ry=R¢. but the present « takes a finite value of
~1.0. This difference can also be eliminated if Egs.
(8b) and (8c) are substituted for ¢’w?/(uw)* in Eq-
(13b) rather than a constant as assumed by Ellison.
Then it is found that «p has a factor (R{,—R¢)™! which
cancels out with the numerator of Eq. (12). Thus o does
not vanish® at Ry=Ry,.

Townsend’s (1958) analysis is similar to that of Elli-
son. However, he used only two equations: the equation
of temperature variance (5) and the turbulent energy
equation (6). His result is expressed as

Rr=3[1—-(1-Ri/Rio)*], (15)
& According to Turner (1973, p. 150), Ellison later (1966)

adopted a set similar to Egs. (1) to (6) and obtained a=0.5
(not zero) at Rg=0.15.
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F16. 4. A comparison of the predicted behaviors for the ratio
of the eddy transport coefficients. Also shown are the results
from Iaboratory and field observations.

where

1A1 62q (uw)2

4 A, (wh)? ¢

Then

It is easily derived from (15) that
1

T4RL(1-Ry) (16)

It is clear that the analyses of both Ellison and Towns-
end require the assumptions on the second moments of
turbulence in order to obtain a solution from the un-
closed set of equations. Eq. (13a) for Ellison and Eq.
(15) for Townsend are obtained by postulating that

(Ty/T2)(¢>/?) in (13a) and R;/R;, in (15) are inde-

pendent of Ry.

This point was argued by Arya (1972) from an ob-
servational point of view. He also pointed out that his
wind tunnel experiments under a strong stratification
indicated that Kg/Kj did not vanish as Ellison pre-
dicted but approached ~0.6. Arya considered that the
critical condition occurred when the mean flow failed to
feed the energy to the turbulence. Since the turbulent

energy production term is expressed as —uwdU/dz, be
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considered it more appropriate to utilize the w equa-
tion [(2)] rather than the total turbulent energy equa-
tion. His result is expressed as

1— (Fo/F)

= ) (17)
G—(Fo/F)

where F=w?¢?/ (uw)? and G= (u6/wB) (uw/w?), and the
zero suffix refers to the value at the neutral condition.
Here F is related to the present length scales as Fo
=A;/(3l1). Arya postulated that for a strong stability
F and G must approach constant values according to
the Monin-Obukhov similarity theory. Thus the critical
flux Richardson number will be obtained from Eq. (17)
if F and G are evaluated from observations. Recognizing
the difficulty in obtaining the limiting values of F and G
from the greatly scattered data taken under conditions
of strong stratification, Arya utilized the expressions for
anisotropy coefficients derived by Monin (1965) which
were based on the similarity theory. After substituting
the observed values for the correlations and anisotropy
coefficients together with

kz U
pou=—-—rvo{; a=3,
%, 03

(18)

Arya obtained the critical flux Richardson number of
0.15~0.40. Here {=z/L and L is the Monin-Obukhov
stability scale.

It seems that a much simpler derivation for R is
possible. For example, in the surface layer

¢ 1
Rj’c = hm —_— = 0.2,
o oy

where the empirical relation (18) was used.

Predicted o’s are shown in Fig. 4. Eq. (11) was util-
ized for the closure models; Eq. (12) with R¢,=0.2 and
ap=1.35 resulted in Ellison’s & and Eq. (16) with R;,
=0.185 produced Townsend’s a. The constants for Elli-
son’s and Townsend’s models were adjusted so that
their o took the value of 1.35 when R¢(=0 (neutral).
Monin’s result (1965) is also included in Fig. 4 for com-
parison even though his model is not exactly the same
as the present closure model as pointed out in the foot-
note of Section 4.

Except for Townsend’s case all the predicted a’s de-
crease with increasing R¢ which indicates that turbulent
heat transfer becomes less efficient than momentum
transfer in the case of strong stratification.

Fig. 4 also includes the observed values of o in the
atmosphere (Businger ef al., 1971) in a wind tunnel
(Webster, 1964 ; Arya and Plate) and in a water channel
(Ellison and Turner, 1960). Measured values show a
great scatter so that they are indicated by shaded areas.
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6. Conclusions and remarks

A more complete discussion is glven on the stability
functions Sy and Sy than those glven in Mellor (1973)
or Mellor and Yamada (1974). It is assumed, in order
to maintain the solutions to be realistic, that Sy and S
vanish when the Richardson number becomes greater
than the critical value. Such an assumption seems to be
approximately verified by the results obtained by util-
izing the more complete model described in Mellor and
Yamada (1974).

A comparison is made on the ratio of the eddy trans-
port coefficients, Kg/K 5, derived by different authors.
1t is not, however, possible to make rigorous compari-
sons of the results with observed data since the data
collected here show a great scatter.

The following remarks are made from the comparison
of the closure model with the earlier works. Ellison
(1957) and Townsend (1958) made direct assumptions
concerning the behaviors of the second moments of tur-
bulence in order to obtain solutions. Such assumptions
seem questionable, however, as indicated by the ob-
served data taken under strong stratification which ex-
hibit a great scatter.

On the other hand, the success of the “closure model,”
of course, depends on the closure assumptions and the
choice of the empirical constants. Speaking of the latter,
numerical values of the empirical constants are fairly
easily determined from the data under the neutral sta-
bility condition as discussed in Mellor (1973). On the
other hand, a direct justification of the closure assump-
tions from observations are very difficult since accurate
measurements of the pressure fluctuation under a strong
stratification are not yet available. An alternative way
to examine the closure assumptions is to conduct a three-
dimensional numerical simulation as done by Deardorff
(1972) and make a term-by-term evaluation. The third
approach is more practical, i.e., it begins by assuming
the closure models are right ones and one can judge the
assumptions by comparing the predictions with observa-
tions. Some success with this approach is reported by
Mellor (1973), Lewellen and Teske (1973), Mellor and
Yamada (1974), Wyngaard and Coté (1974), Rao ef al.
(1974) and Yamada and Mellor (1975), but it is clear
that further examinations are necessary before a definite
conclusion may be reached.
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