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14 The Geostrophic Momentum Approximation and the Semi-Geostrophic
Equationsin Pseudo-Height Coordinates

14.1 Geostrophic momentum approximation on an f-plane

In midlatitude cyclones the relative vorticity is often cparable with the Coriolis parameter, particularly in fraht
regions. This raises the question of the validity of quasiggrophic theory in simulating the life cycle of midlatit
cyclones. We now proceed to develop semi-geostrophic yhebike quasi-geostrophic theory, semi-geostrophic
theory is a filtered theory in that it does not possess salatimorresponding to freely propagating gravity waves.
However, semi-geostrophic theory contains less appraiamsthan quasi-geostrophic theory. The additional ptsy/si
in semi-geostrophic theory is crucial for the simulatiorceftain nonlinear aspects of cyclones, especially fronts.

Semi-geostrophic theory has two parts—the geostrophic mameapproximation and the transformation to geo-
strophic coordinates. The geostrophic momentum apprdi@m#o the primitive equations (13.13)—(13.17) is
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These equations form a balanced system in that they cansotiloke gravity wave propagation. In comparing the
semi-geostropic equations (14.1)—(14.5) with the quasistrophic equations (13.19)—(13.23) we note that (14d) a
(14.2) include momentum advection by the horizontal agepkic motion and by the vertical motion. In addition,
the thermodynamic equation (14.5) is exact as opposed tguasi-geostrophic version (13.23).

The semi-geostrophic equations (14.1)—(14.5) possessyaa@a&sonable vector vorticity equation and potential
vorticity equation. These are not simple to derive, and thmits are given in Appendix F. The three-dimensional
vorticity equation is

pD% <Cpg> — (¢, V)u- H%k x V6, (14.6)
where
D_o, 0, 0 0
Dt ot Ox Ay 0z’
and
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The potential vorticity conservation relation is

DP
— 14.7
5 =0 (14.72)
where )
P=-¢,-Vo. (14.7b)
P

Note that the semi-geostrophic potential vorticity priplei(14.7) is identical to the primitive equation potential-
ticity principle except that the vector vorticiy is approximated by ;. The approximation could also, therefore,
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be referred to as the geostrophic potential vorticity agpnation. The extra term in the definition of vorticity is
necessary for mathematical consistency. However, in mmgsfof interest it is only a small correction.

Now consider the energy principle associated with the sggnistrophic equations (14.1)—(14.5). To obtain the
kinetic energy principle we multiply (14.1) by,, (14.2) byv,, (14.3) byw, and then sum the results, using the
geostrophic relations, to obtain

0K, 0K, 0K, 0K, 19J0) [ Jp g
— A 14.
at " ar Ty TV TUar TVay TVa: g Y (14.8)
whereK, (u +wv )|s the geostrophic kinetic energy per unit mass. Using timticoity equation (14.4), we can

put (14. 8) in the qux form

d(pKy) | Olpu(Ky+¢)] | Olpv(Ky+¢)]  Olpw(Ey,+¢)] g
8tg + ajc + 8; + aj = eowﬁp. (14.9)

Integrating (14.9) over the entire volume, assuming theeena net fluxes of, or ¢ across the boundaries of the
domain, we obtain the kinetic energy principle

%///% (“3 + US) pdxdydz = 92 /// whpdrdydz. (14.10)
0

Note that the semi-geostrophic kinetic energy principk.g} is different than the quasi-geostrophic kinetic egerg
principle (13.32), but that the integrated semi-geostiofiirm (14.10) is identical to the integrated quasi-gemysitiic
form (13.33).

To obtain the potential energy principle, we multiply themmodynamic equation (14.5) by(g/6y)z, which
yields

D g _ 9
th< 9029) = 60w9p. (14.11)

In flux form, (14.11) can be written

i[ﬁ(‘i 9>}+§[W<‘Mﬂ ai[”(‘eo”ﬂ * 5 @’“’(‘eozeﬂ gyt (1412

Integrating (14.12) over the entire domain, assuming thegao net fluxes off across the boundaries of the domain,
the potential energy equation becomes

/ / / (—29) pdrdydz = — = / / / wlpdadydz. (14.13)

Note that the energy conversion term on the right hand sidé4f 3) is identical, except for sign, to the conversion
term on the right hand side of (14.10). Adding the kineticrggeequation (14.10) and the potential energy equation
(14.13), we obtain the total energy equation

%/// {% (ug + vg) — 99,29} pdzxdydz = 0. (14.14)
f « o

According to (14.14), the sum of the mass integrated geplicdinetic energy and potential energy is conserved in
semi-geostrophic theory.

For practical numerical prediction, the form (14.1)—(9)4s5inconvenient. The fields,, v,, # cannot be indepen-
dently predicted by (14.1), (14.2), and (14.5), singev,, ¢ are all related t@ through the geostrophic and hydrostatic
relations. In fact, only one dependent variable should ledipted, and all others should be diagnosed.

14.2 Geostrophic coordinates

So far we have discussed the primitive equations, the quesitrophic equations and the geostrophic momentum
approximation to the primitive equations. These threeesystof equations are summarized in Table 14.1. As we
noted in the previous section the equations with the geplsitanomentum approximation look very much like the
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primitive equations. The quasi-geostrophic equationk lnore approximate in that vertical advection of momentum
is neglected, horizontal advection of momentum and pakteinperature is done geostrophically, and vertical nmotio
occurs against a standard atmosphere static stabifftyz). What we will now show is really quite remarkablé.
the horizontal coordinates are transformed to geostropvordinates and transformed ageostrophic components
are defined, then the geostrophic momentum equations almegsime formally identical to the quasi-geostrophic
equations.

We begin by introducing the new independent varial€sY’, Z, T') defined by

(X,Y,Z,T) = (x—l—if,y—if,z,t). (14.15)

The reason for introducing andT' is thatd/9Z # 0/0z andd/0T # 0/0t. The independent variablé§ andY
are called geostrophic coordinates since, using (14.1] @), we can write

DX Dz 1Du,
- = _— = — Ugg = , 14.16
Dt~ Dt " f Dt 4T Mee Tl (14.16)

DY Dy 1Du,

Dt Dt f Dt

=V — Vgg = Vy. (14.17)

Because of (14.16) and (14.17) we can interg€tY’) as the position a particle would have if it moved with the
geostrophic velocity at every instant. Let us now refatey, z, t) derivatives ta X, Y, Z, T') derivatives:

o 9 X 9 Y D

o —or T arox T ar oy (14.18)
g 0X 0 8Y 0
or Oz 8X 9z 0Y (14.19)
0 0X 0 oY o
By = By 9X " 0y oY e
0 90X 0 ay 9 0
9: = 920X " 0z0v 07 (14.21)
Equations (14.18)—(14.21) can be combined to obtain
D_9,0 0, 0 9 DX DYy o0
Dt ot 0z Oy 0z 0T Dt 90X Dt 9y A
which, with the help of (14.16) and (14.17), can be written
D 0 0 0 0
Dt aT +u gaX + vgaY +w87 (14.22)

Thus, in the new coordinates the horizontal advecting vgldwas become geostrophic. Where did the horizontal
ageostrophic advection go? Apparently it has become implithe coordinate transformation, i.e., the difference i
plotting a solution in(X, Y, Z) and(x, y, z) is essentially due to horizontal ageostrophic advection.

Defining

_10vg o 1oug  10vg _ 10uy 10v; 5 _ _10uy
=o' e Toy ST Foay YT Fa T e (14.23a)
or, in terms ofy,
1
f2¢’ld,a f2 ¢JLy’ - P(byy, f2 ¢£CZ7 6 f2 QSJZ s (1423b)
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Figure 14.1: Panel A shows a meridional geostrophic wintepathat is sinusoidal in the geostrophic coordin&te
(with the meridional geostrophic wind denoted 3. Panel B shows the transformation to the physical cootdina
wherez = X — V/f. WhereV > 0, there is a shift to the left, and wheté < 0, there is a shift to the right. As a
result, the anticyclonic center H is broadened and weakemigite the cyclonic center L is tightened and strengthened.
From Hoskins (1975).

we can write (14.19)—(14.21) as

8 0 8
8 0 0
0 0 0
5 = %x T Ba—y +t57- (14.26)
Taking certain combinations of (14.24)—(14.26) we can stimtthe inverse transformation is
0 0 0
0 0 0
0 0 0 8
whereJ, the Jacobian of the transformation, is the nondimensieextical component of absolute vorticity, i.e.
oX,Y) 1 ¢
J=1+a)(l+c)—b*= =k (, == 14.30
(1+a)(1+0) Sy~ PG (14.30)
Using (14.23a) we can write
10v 1 9(ug,vy) O(X,Y) ¢
—Ja(l4+¢)—0bl=—=-"9 4 — 979/ _ =2 14.31
) = = T P ) ) (1430

_ 10u 1 0(ug,vg)  OX)Y)
—[B(1+a)—ab] = fag“Lﬁ aé@; =G ~f (14.32)
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Equations (14.29)—(14.32) imply that

9 _

by

0 0 0 0
In other words the geostrophic space opergtd(0/0Z) corresponds in physical space to a derivative along the
absolute vorticity vector.
Defining
D =¢+ 5 (u)+v7) (14.39)

and using (14.27) and (14.23a) we can write

0P 0 0
Jox = [(1"'0)(%—5%} (¢ + 3 (u) +07)]
o¢
=(1+c¢) (633 —ugfb+vgfa> —b(—fug —ugfc+ vy fb)

= [<1+a)(1+c>—b2}%,

or, using (14.30),

0P 09
X = o (14.35)
Similarly, we can show that
0d  0¢
— =L 14.
Y Oy (14.36)
Using (14.26), (14.23a), and (14.34)—(14.36) we can write
0P 0P 00 0J9 Oug vy
2z " %x TPy T T Ty
of od 09¢

We can summarize (14.35)—(14.37) by writing

99 _ (90 00 90\ _ (0% 00 0O
(fvg’ f“9’900> - (ax’ay’az “\ox'aviaz) (14.38)
In other words the geostrophic and hydrostatic relatioke the same form in geostrophic space, Y, Z) as in

physical spacézx, y, z).
Now suppose we define the new ageostrophic components

(Ulwlﬁgaw*)::(uag+-;;@xz,vag+-;;@yz,i;). (14.39)

Then, using (14.22), we can write (14.1) and (14.2) as
Dyuy — fvg, =0, (14.40)
Dyvg + ful, =0, (14.41)

where
0 0 0

~ar T "ax Mgy
Using (14.22) in the thermodynamic equation (14.5) we obtai
00

Dy (14.42)
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The units on the potential vorticity (14.7b) are PVU. In thegtrophic coordinates the potential vorticity will pldnet
role of a static stability. It is thus useful to defing = [g/(pf00)IC, - VO = [g/(f6o)] P and using (14.33) to write
qq = g9/ (p90)]J(00/0Z), we can then write the thermodynamic equation as

0
D,0 + ;Oquw* =0. (14.43)

The form of (14.43) is the same as in quasi-geostrophic shexceptpg, has replacedv?.
The last equation we want to transform to geostrophic spateei continuity equation. To do this we start from
the vertical component of the vorticity equation. Dottikdgnto (14.6) and using (14.33) we obtain

D _ 4 ,9(pw)
D (&Co) = 1057

or, because of (14.30)
DJ d(pw)

Dr =0z
oJ  0(pw)
D,J 0 (g)
J2 poZ \J /)’
- 9(pw”)
1 —
D,J ' = 07 (14.44)

From (14.11) and (14.29) we have

ox Oy ox Oy

As discussed at the end of section 14.1 the last term is a swraéiction which can be neglected at the level of the
geostrophic momentum approximation so that

k¢, =f/=f+5L- 22+

Ovg  Ouyg l Oug Ovg  Ovg Oug
ox Oy f '

Ovg  Oug
= — - 14.4
Now application of (14.27) and (14.30) yields
J Ovug 1 Ovg 1 Ovg 2
FoX (+c)f8m 7 oy (1+c)a—>b
_Jov _ 2 2 _
J f6X7(1+a)(1+C) b*—a(l+c)+b°=1+¢,
or -
_ 2% _
J< 7 8X> 1+ec (14.46)
Similarly,
10ug\
and Jo J o
SOV 20Uy
7oy 7 oX b. (14.48)
Using (14.30) we can write (14.45) as
Ovg  Oug
=f+ 2L -2 =f(1 .
fJ=f+ ar oy f(l4+a+c)
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Using (14.46) and (14.47) this becomes
1 0u 10v
= 1+ =229 29 1
s=a (1) (1 ) -1

v ou
+ 9 _ Z29
B S (14.49)
r-(5e-5%)
SinceJ is the dimensionless vertical component of absolute vibytiasdv, /0X — Ju, /0Y approacheg the vertical

component of absolute vorticity approaches infinity. Reftug now to the derivation of the transformed continuity
equation, we substitute (14.49) into (14.44) to obtain

1 *
Dg( av"+au‘7>+a(’0w>=o,

or, collecting the terms witly

J =

f oX oY pOZ
o 1 0 0 0(pw*)
1 9 pwr) _
7 < 5‘XD Vg + aYDgug) + 007 0.

Using (14.40) and (14.41) we finally obtain

ou* ov* 8(pw*)
29 29 =0. 14.50
ax oy T oz (14.50)
Thus, even after introducing the new independent varighted’, Z) and the new ageostrophic componends, , v;; ,, w*)
the form of the continuity equation is unaltered. This isdad remarkable

Let us now find the relationship betwegnpand®. Sinceg, = Ja" we can use the hydrostatic equation to
write )
J = —0y,. (14.51)
Pdg
The product of (14.46) and (14.47) minus the square of ()4/iéfds
) 1 1 1 92,
J2(1- F(DXX 1- Fcpyy f4 =J (14.52)
Substituting (14.52) into (14.51) foF—! we obtain
1 1 1
7 (Pxx + Pyy) — 7 (PxxPyy — Pxy) + —Pzz = 1. (14.53)
Pdq

To summarize we now collect (14.40), (14.41), (14.38),304.(14.43) and (14.53) into a complete system of equa-
tions in the eight unknowns,, vy, 0, ®, q,, u,, v;,, w*, all of which are functions of X, Y, Z, T'):

[ Oug Ouy

o o gyt gt = iy =0, (14.54)
ZZZJWQZXJF qujjtf ut, =0, (14.55)
(fvg,—fumeoﬁ) = (g;{;,g;{;,g;), (14.56)

g; +ug g; + v gg i quw =0, (14.58)

% (Pxx + Pyy) — F (PxxPyy — <I>§(y) + pjjg(I)ZZ =1. (14.59)

Formally these equations are almost identical to the qgesstrophic equations (see Table 14. 1) The differenees ar
as follows: (1) the independent variables &feY, Z, T'; (2) the ageostrophic flow ig* w*; (3) the effective

ag’ ag7
static stability ispq,, rather thanV2, which is a standard atmosphere static stability.
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14.3 Ageostrophic circulations

Although the form of the semi-geostrophic equations (1%-84.59) is not very convenient for computation, it is
convenient for derivation of the ageostrophic diagnostjeagion. Actually this equation can take two forms, which
we now derive. Because of the similarity in the forms of themsgeostrophic and quasi-geostrophic equations the
analysis here follows closely that leading from (13.443-48) to (13.57).

Taking f(0/0Z) of (14.54) and (14.55), and takity 0.X and9/9Y of (14.58) we obtain

0 ou ov
(8T+Vg vX)f ; f2 __f g vXug
_ 9 . vy
=% (k x Vx0) <k ay)
0
_920% V=0 (14.60)

9 . vy
g (k% Vx0) (k ax)
g Ovg ' _
b0 OX Vx0=-0Q1 (14.61)
9 g 96 0 _ 99 _
(8T vy vx> Goax T ax W) =~ G VX0 = Q) (14.62)
0 g 00 0 o g 0vy B
<8T + v, VX) 90 OV + = BY% (ggpw™) = 00 Y Vx0 = Q. (14.63)

Here we have used the thermal wind equatffdv,/0Z) = (g/60)k x Vx6 and the relation&/ xu, = k x
(0vy/0Y) , Vxvy = —k x (0v,/0X). Q1 andQ) are the components of the vecQr defined by

Q=(Q1,Q2) = <g§§ V0, (ng VX8> (14.64)

Subtracting (14.61) from (14.62), adding (14.60) and (3}%.6nd using the thermal wind equation, we can write our
system of diagnostic equations for the ageostrophic flow as

0 . ou;
oy (Gopw”) = 778 = 201, (14.65)
0 o
5y (@pw”) = f? 5 Zg = 2Qs, (14.66)
) o

Vag | Oag | Nowr) _, (14.67)

0X oY p0Z
Adding 9/0X of (14.65) tod/dY of (14.66) and using the continuity equation (14.67) we iobta

2 2 d(pw*) _ )
Vi (pgw™) + f az( 07 >_2vx Q. (14.68)

which is the generalized omega equation. Compare this Wélgtiasi-geostrophic omega equation (13.57). We note
that the physical discussion following (13.57) carriesrovith little modification.
Another way of proceeding from (14.65)—(14.67) is to defime vector streamfunctio® = (¢, v2) such that
% 81[11 * 8¢2 * 81/}1 81/)2

B _ _ O, O 14.69
Plag = =977 Plag =~ PV = 5% T 5y (14.69)
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The continuity equation (14.67) is then automaticallysad. Equations (14.65) and (14.66) can then be written

0 (0N, o0 (Db _,o O ( Ot
ox (wax) oz (o) =20 o (w3 ) (14.70)

0 0 o (0 0 0
Y <QQB¢Y2> " f287 (pg);) =2Q2 — 9y (%;ﬁ;) ) (14.71)
which is an alternative to (14.68). In fact, (14.68) is eadirived from (14.69)—(14.71).

Thus we have separate equations for the circulation i #e) and(Y, Z) planes with vertical velocity terms
providing a linkage in the form of the second terms on thetriggnd sides. Scaling arguments suggest that the linkage
term in the(X, Z) equation is negligible if the geostrophic length scale i Yhdirection is much larger than the
Rossby radius of deformation. TH&, Z) circulation equation then reduces to the cross-frontautation equation
of Eliassen (1962). Thus (14.70) and (14.71) are the nagxtahsion of Eliassen’s equation to the three-dimensional
domain, and not necessarily to frontal regions. Indeed) thie modifications noted previously, these equations are
applicable in the quasi-geostrophic context also.

14.4 Comparison of semi-geostrophic and quasi-geostrophic theories

Hoskins (1975) has made the following comparison of the sggostrophic and quasi-geostrophic theories. The
semi-geostrophic equations include the advection of anocppation to the full potential vorticity, as opposed t@th
guasi-potential vorticity advected in the quasi-geodtiopquations. Ageostrophic advection of potential vitiand
potential temperature is included in the former system.uasitgeostrophic theory the only ageostrophic advecton i
by the vertical velocity where it acts on a standard vertieaiperature gradient.

From this point on, we simplify the comparison by considgamly the uniform potential vorticity case. The quasi-
geostrophic equations would be identical with the semisgephic equations (14.54)—(14.59) except thak’, Y and
Z would be replaced by, x, y andz.

The more important difference is that the geostrophic vigescand potential temperature are predictedaty’, 7)
not (z,y, z). From the nature of the coordinate transformation it islga®en (e.g., Fig. 14.1) that positive relative
vorticity is increased and the region in which it occurs isr@@ased. Negative relative vorticity is decreased in magni
tude and the region in which it occurs is increased. Thus ¢h@-geostrophic theory allows the production of sharp
fronts, small vigorous low pressure cells, and broad wegk fpressure cells. This clearly depends on the inclusion
of advection by the convergent or divergent wind field andribelinearity in the stretching of vorticity. Using the
semi-geostrophic equations, systems that are verticafjugiasi-geostrophic theory tend to orient themselvesgalon
absolute vortex lines [from (14.33)]. This was commentethpfjortoft. This is exactly the sloping of frontal regions
found in the frontal studies.

Another property of nonlinear baroclinic waves as desctibg the semi-geostrophic equations may be simply
inferred. The phases of the temperature and pressure wavgisem by quasi-geostrophic theory are always such
that near the surface, the temperature perturbation mariwecurs in the cyclonic region and the minimum in the
anticyclonic region. Thus the semi-geostrophic equatiordy that the area of warm anomaly is decreased and that
of cold anomaly is increased. Higher up in the atmospheredberse is true. This is clearly the occlusion process
in which warm air is moved upward, thus releasing potentiedrgy. As remarked previously, in quasi-geostrophic
theory, potential energy is released by moving warm airwatd and the occlusion process is not described.

Despite the much less stringent approximations made in ¢niwation of the semi-geostrophic equations, they
predict merely a distortion of the quasi-geostrophic siolutin a range of parameter space in which the derivation
of the latter is not consistenfThis may go some way to explaining the point commented olieeathat the quasi-
geostrophic equations have been successfully used irisitaan which their validity is not clear.
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Table 14.1: A Comparison of Equations

Primitive Equations:
Ju ou Ju ou
ot + Or oy 0z
v v v v
a%—u%+va—y+w&+fuag =0
0  0¢
9% =~ 92
Ouqg  Ovgg  O(pw)
or + oy + p0z
00 00 00 a0

E‘FU%-FU%—F”LUE—O

=0

Ouy Oug Oug Oug
ot " War TV, T, Ve =0
Ovg Ovg Ovg Ovg
Tt TV TGy TV, T =0
o _ 9
90 0z

Quasi-Geostrophic Equations:

ou ou ou
ot Ty Tlig, It =0
vy o Ovg
gt " Uegy TVa, TIua =0
0 _ o
90 0z
gy | Ovag  O(pw)
oz + y + pdz 0
o0 90 00 Oy .,
J— — —_— 7N =
8t+ugax+vg8y+g w=0
Semi-Geostrophic Equations:
Ouy Oug Oug .
ar Ty Tligy Ve =0

ov ov ov .
g g9 + 1}987}/‘? + fuag = O
o 0d

9%, ~ 0z

ar T "ax
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