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ABSTRACT

The analytical model proposed by Teixeira, Miranda & Valente is modified to cal-

culate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The

drag is found to be more strongly affected by the vertical variation of the background

velocity than for an axisymmetric mountain. In the hydrostatic approximation, the

corrections to the drag due to this effect, as well as the perturbed quantities of the flow

at the surface, including the pressure, may be calculated analytically.



1. Introduction

Recently, Teixeira et al. (2004) presented a linear model of mountain waves for

wind profiles with shear and curvature, based on the WKB approximation. This model

provided new analytical expressions for the wave drag as a function of the first and

second derivatives of the background velocity profile. These expressions were shown to

be asymptotically in agreement with previously known exact formulae, and to reproduce

to a good degree of approximation the results of numerical mesoscale simulations, for

similar input conditions. They were able to elucidate, in particular, why two flows that

turn with height in different ways lead to opposite dependencies of the drag on the

Richardson number.

Teixeira et al. (2004) considered the drag of hydrostatic flow over an isolated axisym-

metric mountain. Two-dimensional (2D) orography is also frequently used in idealized

studies of mountain waves, since it roughly approximates elongated ridges, which are

common in nature. It is therefore of great practical interest to study the drag on this

type of orography, for which the equations of motion simplify considerably due to the

symmetry. In this note, the model of Teixeira et al. (2004) is extended to calculate the

gravity wave drag associated with hydrostatic flow over an isolated 2D ridge.

The property that the corrections to the drag due to the variation of the wind with

height are independent of the detailed shape of the orography is shown to hold also in

the present case. However, the coefficients of these corrections are different from the

axisymmetric case, due to the different geometry of the problem. Furthermore, in the

case of a bell-shaped ridge (and presumably also for other simple types of orography),

the perturbations of the flow variables at the surface may be calculated analytically.
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2. Model equations

Consider stably stratified flow over an infinite isolated 2D mountain ridge. If a

reference frame is defined such that the ridge is aligned in the y direction, and the

background state of the atmosphere is horizontally uniform, the perturbations associ-

ated with the internal gravity waves generated by this orography are independent of

y. If the fundamental equations of motion with the Boussinesq approximation are lin-

earized with respect to these perturbations (which can be done if they are sufficiently

small), and the perturbations are expressed as Fourier integrals along x, an equation

may be derived for the vertical structure of ŵ, the Fourier transform of the vertical

velocity perturbation:

ŵ′′ +
(

N2

U2
− U ′′

U

)
ŵ = 0. (1)

Here N is the Brunt-Väisälä frequency (assumed constant), U is the background velocity

(along x) and the primes denote differentiation along the vertical direction, z. This

equation was obtained assuming additionally that the flow is steady and hydrostatic.

Compared with eq. (13) of Teixeira et al. (2004), (1) is simplified by the symmetry along

y, which means that the y component of the horizontal wavenumber vector k = (k1, k2)

is k2 = 0. For that reason, the horizontal wavenumber will be called simply k.

As is well known, when the coefficient multiplying ŵ in (1) varies relatively slowly

with z, this equation may be solved using the WKB approximation. Following Teixeira

et al. (2004), the approximate WKB solution of (1) valid up to second order in the

small perturbation parameter, ε, is

ŵ = ŵ(z = 0) exp

{
i

∫ z

0

(
m0(εz

′) + εm1(εz
′) + ε2m2(εz

′)
)
dz′

}
, (2)
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where m0, m1 and m2 are the zeroth, first and second-order coefficients of the series

expansion of the vertical wavenumber of the internal gravity waves in powers of ε.

When introduced into (1), the solution (2) yields the following definitions:

m0 =
N

U
sign(k), (3)

εm1 = − i

2

U ′

U
, (4)

ε2m2 = −1

8

U

N
sign(k)

(
U
′2

U2
+ 2

U ′′

U

)
. (5)

In (3)-(5), the radiation boundary condition at z → +∞ is implicitly assumed, since the

sign of m0 and m2 is the same as that of k, implying upward energy propagation. These

expressions are analogous to eqs. (22)-(24) of Teixeira et al. (2004), but simplified for

2D, hydrostatic flow. With the addition of the boundary condition at the surface

ŵ(z = 0) = iU0kη̂, (6)

the solution to the problem is fully specified. Here η̂ is the Fourier transform of the

surface elevation and the subscript 0 applied to the background velocity denotes its

value at the surface.

3. Mountain wave drag

For a 2D mountain ridge, the total gravity wave drag is infinite, and it only makes

sense to define a drag per unit length in the transverse direction. In the linear approx-

imation, this is given by

D =

∫ +∞

−∞
p(z = 0)

∂η

∂x
dx, (7)
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where p is the pressure and η is the surface elevation. The drag can also be calculated

in Fourier space, through the integral

D = 2πi

∫ +∞

−∞
kp̂∗(z = 0)η̂dk, (8)

where k is the wavenumber (along x) and p̂∗ is the complex conjugate of the Fourier

transform of the pressure.

p̂(z = 0) is given, in the present approximation, by

p̂(z = 0) = iρ0U
2
0

(
m0(z = 0) + εm1(z = 0) + i

U ′
0

U0

+ ε2m2(z = 0)

)
η̂, (9)

where ρ0 is the reference density of air (cf. eq. (31) of Teixeira et al. 2004). Using the

results (3)-(5), (9) becomes

p̂(z = 0) = iρ0NU0

[
sign(k) +

i

2

U ′
0

N
− 1

8
sign(k)

(
U
′2
0

N2
+ 2

U0U
′′
0

N2

)]
η̂. (10)

Introducing the complex conjugate of this equation into (8), the drag may be written

D = 2πρ0NU0

(
1− 1

8

U
′2
0

N2
− 1

4

U0U
′′
0

N2

) ∫ +∞

−∞
|k||η̂|2dk. (11)

In (11), |k| appears inside the integral because of the sign(k) factor in the terms of

zeroth and second order in ε of the pressure perturbation, p̂. The part of the drag

corresponding to the first-order term cancels, because the sign(k) factor is absent. Since

|η̂|2 is even when the surface elevation function η(x) is real, this part of the integral is

zero, because the corresponding integrand is odd.
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Noting that, by (11), the drag in the absence of shear is defined as

D0 = 2πρ0NU0

∫ +∞

−∞
|k||η̂|2dk, (12)

the drag for the general case may be expressed more compactly as

D = D0

(
1− 1

8

U
′2
0

N2
− 1

4

U0U
′′
0

N2

)
, (13)

and it is clear that the corrections to the drag due to shear and curvature of the

background wind profile do not depend on the form of the function η̂. This equation,

which is analogous to eqs. (50)-(51) of Teixeira et al. (2004), is nevertheless much

shorter, due to the simplifications brought by the 2D geometry.

The drag given by (13) is per unit length and so cannot be directly compared with

the drag calculated by Teixeira et al. (2004), but the relative corrections due to the

shear and curvature of the wind profile, put in evidence by (13), are of a similar nature

and may be compared. These corrections differ from those valid for an axisymmet-

ric mountain, with the 1/8 and 1/4 coefficients, multiplying respectively U
′2
0 /N2 and

U0U
′′
0 /N2 in (13), being larger by a factor of 4/3. This means that the effect on the

drag of the shear and curvature of the wind profile is qualitatively similar, but stronger

for 2D than for 3D flow.

For a linear wind profile of the form

U = U0

(
1− z

zc

)
, (14)
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where zc is constant, (13) reduces to

D = D0

(
1− 1

8Ri

)
, (15)

where Ri = N2/U
′2
0 = N2z2

c/U
2
0 is the Richardson number of the flow. This expression

may be compared with the corresponding result obtained analytically by Smith (1986)

for a linear profile with an arbitrarily large shear rate. It may be shown that, in the

present notation, Smith’s drag expression (his eq. (3.17)) is

D = D0

(
1− 1

4Ri

)1/2

, (16)

and it is straightforward to show that both expressions are asymptotically equal in the

limit of large Ri. The consistency of the two approaches, which parallels the asymptotic

agreement found between the 3D model of Teixeira et al. (2004) and the exact drag

expression of Grubǐsić & Smolarkiewicz (1997), gives further confidence in the WKB

approach adopted here.

Figure 1a shows a comparison between the normalized drag given by (15) and data

taken from the mesoscale, non-hydrostatic numerical model NH3D (Miranda & James

1992). This model is 3D, but is run here for a 2D ridge using a sufficiently wide domain

of integration. The conditions considered in the runs were very approximately linear

and hydrostatic, in order to isolate the effect of shear. Also shown is the drag given by

Smith’s expression, (16). It may be seen that the agreement with (15) is nearly as good

as with (16). However, the value taken by D/D0 at Ri = 1/4 is larger than zero, in

contradiction with what is predicted by (16). Since for this value of Ri, the flow should

be close to becoming unstable, neither analytical result is formally accurate.
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When the wind profile is more complicated than (14), both shear and curvature

terms are important in (13). An early attempt to evaluate the effect of the curvature

of the wind profile on the surface drag on a 2D ridge using a WKB approximation

was made by Grisogono (1994). In the present notation, and for inviscid conditions,

Grisogono’s drag expression (his eq. (4.8)) reads

D = D0

(
1− 1

2

U0U
′′
0

N2

)
. (17)

The coefficient multiplying the curvature term is larger by a factor of 2 than that present

in (13) and the term proportional to U
′2
0 is absent. The reasons for these discrepancies

have to do with an inconsistent application of the WKB method and are discussed in

detail by Teixeira et al. (2004).

When studying the effect of curvature of the wind profile on mountain wave drag in

2D, it is not possible to consider a flow simultaneously with constant N and constant

Richardson number, as was done for the 3D situation by Teixeira et al. (2004). So, the

simplest flow with non-zero second derivative, a parabolic wind profile, is considered

next:

U = U0

[
1−

(
z

zc

)2
]

. (18)

In this flow U ′
0 = 0, hence the Richardson number at the surface is infinite. However,

the curvature is U ′′
0 = −2U0/z

2
c , and this can be related to the Richardson number at

the critical level (z = zc), Ric = N2z2
c/4U

2
0 , which is the important parameter for this

flow. It turns out that the drag expression (13) reduces in this case to

D = D0

(
1 +

1

8Ric

)
. (19)
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So, the drag increases as Ric decreases, unlike the previous case, despite the qualitative

similarity of the background wind profiles (14) and (18).

In figure 1b, the drag calculated with (19) is compared with data from numerical

simulations of the NH3D model for approximately linear and hydrostatic conditions.

Also shown is the prediction from Grisogono’s formula, (17). It is clear that the pre-

diction of (19) is not as good as in the previous case, with some drag underestimation,

especially at relatively low Ric. This resembles the behavior of the drag for a turning

wind over an axisymmetric mountain in figure 7 of Teixeira et al. (2004), where the

curvature is also negative at the surface. Nevertheless, qualitatively, and in order-of-

magnitude terms, the agreement is satisfactory. Curiously, (17) gives a better prediction

of the drag than expected due to this behavior, but is clearly inferior to (19), especially

for large Ric.

4. The surface pressure perturbation

In order to understand the behavior of the drag, it is useful to calculate the surface

pressure perturbation (as was done in 3D by Teixeira et al. 2004). In fact, at the

surface, it is straightforward to calculate, not only the pressure, but also all other

relevant variables of the flow. However, some of them, such as the vertical velocity

perturbation, the buoyancy perturbation, b, and the spanwise velocity perturbation, v,

are related in a trivial way to the surface elevation, η. Apart from the pressure, the

only other variable of the flow that is affected at the surface by the vertical variation

of the background velocity is the streamwise velocity perturbation, u (which is relevant

for downslope windstorms).

p(z = 0) may be obtained by calculating the inverse Fourier transform of (10).
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Although the only expressions depending on k in (10) are sign(k) and η̂, and this

renders the integration analytical in most cases, the presence of sign(k) means that η̂

must be specified. Here, an isolated bell-shaped ridge will be used as an example. The

corresponding Fourier transform is

η̂ =
1

2
hae−a|k|, (20)

where h is the maximum elevation and a is the half-width of the ridge.

Then, it is found from (10) that

p(z = 0)

ρ0NU0h
= −

(
1− 1

8

U
′2
0

N2
− 1

4

U0U
′′
0

N2

)
x/a

1 + (x/a)2
− 1

2

U ′
0

N

1

1 + (x/a)2
. (21)

The pressure perturbation thus comprises two parts: the first one, which is anti-

symmetric with respect to the ridge, produces drag; the second one, which is sym-

mmetric, and in fact proportional to the surface elevation, does not produce drag.

Figure 2a shows the pressure perturbation as a function of streamwise distance for

different values of Ri, for the linear background velocity profile (14). The continuous

lines correspond to expression (21), while the symbols represent output from the NH3D

numerical model. For high Ri, the pressure distribution tends to be anti-symmetric with

respect to the orography, in agreement with the linear theory of Smith (1980). As Ri

decreases, the anti-symmetric component of the pressure perturbation weakens and the

symmetric component becomes more prominent. The analytical expression reproduces

the numerical simulation data quite accurately, except for Ri = 0.25, confirming that

the WKB approximation can be used for Ri as low as 0.5 (as happened in the 3D case).

Of course, this is also consistent with the behavior of the drag in figure 1a.
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Figure 2b presents the pressure perturbation for the parabolic background velocity

profile (18). In this case U ′
0 = 0, and hence, according to (21), the symmetric component

of the pressure vanishes. The pressure perturbation is thus predicted to be perfectly

anti-symmetric. When the analytical results given by (21) are compared with the

numerical results, this aspect is confirmed, except for Ric = 0.25, and to a much

lesser degree for Ric = 0.5. However, the magnitude of the pressure is considerably

underestimated by the analytical model for Ric > 1. This is consistent with the worse

prediction of the drag, when compared with the previous case, for similar values of Ri.

Especially for the linear background velocity profile, the pressure perturbation given

by the NH3D model tended to drift slightly in time, so as to appear in the plots trans-

lated vertically upward or downward by a constant when compared with the analytical

result, although its shape was in close agreement. This feature, which is related to im-

perfections in the implementation of the boundary conditions in the numerical model,

has been corrected by subtracting from the pressure perturbation given by NH3D the

integral of the pressure over the domain,

∫ L

−L

p(z = 0)

ρ0NU0h
dx, (22)

and adding to it the theoretical value of this integral, which from (21) is seen to be

∫ L

−L

p(z = 0)

ρ0NU0h
dx = −U ′

0

N
arctan

(
L

a

)
= −sign(U ′

0)Ri−1/2 arctan

(
L

a

)
. (23)

In (22) and (23), L is the half width of the domain. Obviously, in these expressions,

only the symmetric part of the pressure contributes to the integral of the pressure

perturbation so, for the parabolic velocity profile, the integral is zero.
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5. Discussion

The calculations carried out in this study are relevant for the parameterization of

gravity wave drag in flow over elongated ridges. As for an axisymmetric mountain,

it appears that the drag depends, to a first approximation, on the characteristics of

the background flow at the surface, at least for linear and hydrostatic conditions. The

slightly worse performance of the model for the velocity profile with curvature, caused

undoubtedly by the variation with height of the background velocity gradient, does not

contradict this conclusion.

The effects of shear and curvature of the wind profile are qualitatively similar to

those for flow over an axisymmetric mountain (with negative curvature increasing the

drag and shear decreasing it), but stronger. This probably happens because a larger

fraction of the air becomes affected by the background velocity gradient, as it is forced

to flow over the ridge, instead of being able to flow around the mountain. For related

reasons, it is necessary to be cautious when extrapolating these results to large am-

plitude ridges: nonlinear effects are known to be more important in 2D than in 3D

geometries (Miranda & James 1992).

Apart from its intrinsic scientific interest and practical relevance, mountain wave

drag in flow over ridges is also amenable to much more detailed comparisons with

numerical simulations. Due to the simplified geometry, the resolutions used in these

simulations can be much higher than in 3D simulations.
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Figure Captions

Figure 1 Normalized drag as a function of the inverse Richardson number. (a) Lin-

ear background velocity profile, (14). (b) Parabolic background velocity profile, (18).

The NH3D model uses Na/U0 = 23, Nh/U0 = 0.01.

Figure 2 Normalized pressure perturbation at z = 0 as a function of normalized

streamwise distance. (a) Linear background velocity profile, (14). (b) Parabolic back-

ground velocity profile, (18). Analytic results are calculated from (21).
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Figure 1: Normalized drag as a function of the inverse Richardson number. (a) Linear
background velocity profile, (14). (b) Parabolic background velocity profile, (18). The
NH3D model uses Na/U0 = 23, Nh/U0 = 0.01.
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Figure 2: Normalized pressure perturbation at z = 0 as a function of normalized stream-
wise distance. (a) Linear background velocity profile, (14). (b) Parabolic background
velocity profile, (18). Analytic results are calculated from (21).
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