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ABSTRACT

Conservation of total, kinetic, and thermal energy in the atmosphere is revisited, and the derived thermal

energy balance is examined with observations. Total energy conservation (TEC) provides a constraint for the

sum of kinetic, thermal, and potential energy changes. In response to air thermal expansion/compression, air

density variation leads to vertical density fluxes and potential energy changes, which in turn impact the

thermal energy balance as well as the kinetic energy balance due to the constraint of TEC. As vertical density

fluxes can propagate through a large vertical domain to where local thermal expansion/compression becomes

negligibly small, interactions between kinetic and thermal energy changes in determining atmospheric mo-

tions and thermodynamic structures can occur when local diabatic heating/cooling becomes small. The

contribution of vertical density fluxes to the kinetic energy balance is sometimes considered but that to the

thermal energy balance is traditionallymissed.Misinterpretation between air thermal expansion/compression

and incompressibility for air volume changes with pressure under a constant temperature would lead to

overlooking important impacts of thermal expansion/compression on air motions and atmospheric thermo-

dynamics. Atmospheric boundary layer observations qualitatively confirm the contribution of potential en-

ergy changes associated with vertical density fluxes in the thermal energy balance for explaining temporal

variations of air temperature.

1. Introduction

Interactions between thermal and kinetic energy

changes have been historically investigated in the liter-

ature under available potential energy, for example,

by Margules (1910) and Lorenz (1955). The focus of

available potential energy is mainly on the hydrostati-

cally balanced atmosphere so far. Zilitinkevich et al.

(2007) proposed the idea of total turbulent energy con-

servation by considering interactions between turbulent

kinetic energy (TKE) and turbulent potential energy

(TPE) changes, in which TPE is defined as the temper-

ature variance normalized by the Brunt–Väisälä fre-

quency. Because turbulent mixing is a process that results

from the nonhydrostatic pressure balance, essentially

Zilitinkevich et al. (2007) have extended the investiga-

tion of interactions between kinetic and thermal energy

changes to the nonhydrostatic atmosphere. Note that

total turbulence energy (TTE) defined by Zilitinkevich

et al. (2007) as the sum of TKE and TPE is different

from total energy conservation, which is described in

this study, and TTE is not constrained by an indepen-

dent conservation law.

By analyzing observed turbulent mixing in the atmo-

spheric boundary layer, Sun et al. (2016) found that in-

teractions between atmospheric kinetic and thermal

energy changes are crucial in determining turbulence

intensity, and turbulent mixing plays an important role

in heat transfer for temperature redistribution and the

atmospheric stratification. In addition, they demon-

strated that the most energetic turbulence eddies are

large and nonlocal. Their study stresses the important

role of energy conservation in determining air motion

and atmospheric thermodynamic structures. However,

using the traditional thermal energy conservation equa-

tion, we are unable to explain observed diurnal variations

of air temperature even for a simple sunny day over a flat

homogeneous terrain (see details in section 4). The un-

satisfactory theoretical explanation of the observation

leads us to examine thermal energy conservation for the

atmosphere in this study.

In the literature, names of conservation laws have

been used differently; we first clarify those names. Note

that all the energy conservation laws address the balanceCorresponding author: Jielun Sun, jielun@nwra.com
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between energy changes or the rate of energy, and en-

vironmental forcings, not energy itself, are conserved

unless the net forcing is zero. Kinetic energy conserva-

tion describes the balance between the net change of

kinetic energy or the rate of kinetic energy within a

system of a finite volume and the net change of work

done at the boundary of the system. Following classical

thermodynamics, we refer to the first law of thermody-

namics as the one for describing internal energy con-

servation when flow is at rest. Batchelor (1967, p. 21)

describes the first law of thermodynamics as ‘‘Work and

heat are regarded as equivalent forms of energy, and the

change in the internal energy of a mass of fluid at rest

consequent on a change of state is defined, by the first

law of thermodynamics, as being such as to satisfy con-

servation of energy when account is taken of both heat

given to the fluid and work done on the fluid.’’ That is,

kinetic energy is not included in the first law of ther-

modynamics as the equilibrium state is considered; the

system only includes molecular motion. The familiar

thermal energy conservation equation for the atmo-

sphere describes internal energy changes of a system

within a finite volume as a result of net heating/cooling

or thermal forcing, and is derived based on the first law

of thermodynamics (e.g., Feynman et al. 1963; Batchelor

1967; Fleagle and Businger 1972; Gill 1982).

In a fluid system that is characterized with flow strat-

ification and motion under the influence of gravity,

conservation of energy studies the total energy including

kinetic, internal (can be expressed as thermal), and po-

tential energy (e.g., Fleagle and Businger 1972). To

distinguish it from other conservation laws, we refer to

conservation of energy for this type of flow as total en-

ergy conservation, which is the same as the total energy

equation [Eq. (4.7.5) in Gill (1982)]. Total energy con-

servation describes the balance between the total energy

change of the system and the rate of the net mechanical

work done to the system and thermal forcing added to the

system. Therefore, total energy conservation provides a

constraint for changes of the sum of the thermal, kinetic,

and potential energy conservation in the atmosphere.

Total energy conservation has also been called the first

law of thermodynamics in the literature (e.g., Bennett

and Myers 1962; Balmer 2010) or simply conservation of

energy (e.g., Fleagle and Businger 1972; Kuo 2005).

Theoretically, the thermal energy conservation equa-

tion can be derived as the residual balance between total

energy conservation and kinetic energy conservation as

demonstrated in, for example,Kuo (2005).We extend the

traditional derivation of thermal energy conservation

in engineering textbooks, and derive the thermal en-

ergy balance based on the physics principles of total en-

ergy conservation and momentum conservation for the

atmosphere, ideal gas law, and mass conservation (sec-

tion 2).Application ofmass conservation explains density

fluxes as a result of air thermal expansion/compression

for the incompressible atmosphere, as incompressibility

is associated with the air volume change with pressure

under a constant temperature (American Meteorological

Society 2018). Because vertical air density changes strongly

impact potential energy changes, while potential energy

changes are associated with kinetic energy changes,

thermal energy conservation derived with the constraint

of total energy conservation has to include this potential

energy change as well. For this kind of nonequilibrium

system, the first law of thermodynamics valid for an

equilibrium system could not be applied. The resulting

interaction between kinetic and thermal energy changes

is different from the energy conversion between thermal

and kinetic energy at a point as a result of high velocities

and viscous energy dissipation such as shock waves and

deceleration of a fluid approaching a subsonic stagnation

point (e.g., Kays 1966). We then use observations to

confirm the role of potential energy changes in explaining

the diurnal variations of air temperature (section 4) based

on the derived thermal energy conservation equation

for the turbulent atmosphere (section 3). A summary is

presented in section 5.

2. Conservation equations of total, kinetic, and
thermal energy

Mathematical derivatives are commonly used to de-

scribe changes of physical variables within an infinites-

imally small volume. However, following the concept of

mathematical limits, such as when spatial intervals

dx, dy, dz/ 0, fluid motions may not exist but only

molecular diffusion. To describe the physical world, we

focus on a system of a control volume that is large

enough to have all components of total energy and is

small enough to be described by mathematical deriva-

tives in this study.

a. Total energy conservation

Following total energy conservation in the literature

(e.g., Bennett and Myers 1962; Fleagle and Businger

1972), total energy conservation for a system of a finite

volume with a constant air density r can be expressed as

r
dE

t

dt
5Q1F

m
. (1)

In Eq. (1), t in the dominator is the time, d/dt5
›/›t1V›/›x1w›/›z (V and w are the horizontal and

the vertical wind speeds, respectively), Et is the specific

total energy,Q represents the rate of net heat added to

the system or diabatic thermal forcing (for changing
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energy) such as molecular thermal conduction, and Fm is

the rate of mechanical work done by the surroundings to

the system. The specific total energy Et in a geophysical

fluid, such as the atmosphere where gravity plays an im-

portant role in flow motion, is the sum of the specific

internal energy Ei, the specific kinetic energy Ek 5
(V2 1w2)/2, and the specific potential energy Ep 5 zg

(g and z are the gravity acceleration constant and the

height above the surface); that is,

E
t
5E

i
1E

k
1E

p
. (2)

Total energy conservation (Wm22) expressed in Eq. (1)

reflects the balance between total energy changes or

the rate of total energy inside the system on the left-

hand side (lhs) and the net heating or diabatic thermal

forcing and the rate of mechanical work done to the

system on the right-hand side (rhs).

The rate of the mechanic work Fm consists of the rates

of the work done by pressure gradients 2= � (Vp) (V is

the wind vector and p is the external or environmental

pressure on the boundary of the system) and by the

viscous stress related to the rate of angular deformation

done to the system « (e.g., Kuo 2005); that is,

F
m
52= � (Vp)1 «52

›(Vp)

›x
2

›(wp)

›z
1 « , (3)

«5
›s

xx
V

›x
1

›s
zx
V

›z
1

›s
xz
w

›x
1

›s
zz
w

›z
, (4)

s
xx
5m

�
2
›V

›x
2

2

3
= �V

�
, (5)

s
xz
5s

zx
5m

�
›w

›x
1

›V

›z

�
, and (6)

s
zz
5m

�
2
›w

›z
2
2

3
= �V

�
. (7)

In Eqs. (4)–(7), sij is the viscous stress between the i

and j directions, m is the dynamic viscosity, and

= �V5 ›V/›x1 ›w/›z. For i5 j, « represents the nor-

mal stress; for i 6¼ j, « represents the tangential stress.

In the atmosphere, the net heating/cooling Q in the

atmosphere can come from vertical divergence of the

atmospheric radiation and latent heat from water

condensation, as well as molecular diffusion. Near the

heated/cooled ground surface, molecular diffusion be-

tween the solid surface and the air above leads to air

temperature changes. Based on the ideal gas law,

p5 rRT (T is the air temperature and R is the gas

constant for dry air, for which the influence of water

vapor on R can be expressed in terms of the virtual

temperature), air temperature changes can lead to air

density changes as dr/r’2dT/T , when the back-

ground air pressure is relatively steady. Meanwhile air

density changes are constrained by mass conservation,

dr

dt
52r= �V , (8)

which can also be expressed as

›r

›t
52= � (rV) . (9)

That is, an air temperature increase (decrease) leads to

an air density decrease (increase) as a result of air thermal

expansion (compression) even though the atmosphere

is approximately incompressible. In other words, both

compressibility and thermal expansion/compression can

lead to= �V 6¼ 0; here, we consider the physical processes

of air thermal expansion/compression associated with

= �V 6¼ 0, as the atmospheric incompressibility is clearly

demonstrated in its compressibility factor of about 1

(Green and Perry 2007) and is indirectly demonstrated

in observations when atmospheric heat is effectively

transferred by turbulent mixing (e.g., Sun et al. 1995;

Vickers and Mahrt 2006).

Over the heated ground surface, the air density of the

heated air through molecular diffusion would be less than

that of the unheated air above, resulting in positive buoy-

ancy and upward air movement, or negative vertical den-

sity fluxes. The energy for the generation of the negative

vertical density flux is obtained from the air thermal ex-

pansion as a result of the thermal forcing Q. When the

surface is cooled through longwave radiation, high-

density air is generated from air thermal compression as

the air is cooled through molecular diffusion near the

surface. As a result, the air density decreases with height,

and the air is stably stratified. When air motions are

generated by Fm in the viscous atmosphere, vertical mo-

tions would lead to positive vertical density fluxes (Fig. 1).

The positive vertical density flux enhances the potential

energy of the system at the expense of the work from Fm.

In both surface heating and cooling situations de-

scribed above, the vertical air density flux is associated

with the external forcings of the system—Q alone for the

surface heating case, and both Q and Fm for the surface

cooling case. To account for the total energy change in

these situations, Eq. (1) needs to include the energy

change as a result of the air density change as well.

Because vertical density changes are much larger

than horizontal density changes, especially in the nearly

horizontally homogeneous atmosphere, the major im-

pact of density variations on energy changes is potential

energy; thus, potential energy changes associated with

thermal expansion/compression as a result of the
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thermal energy transfer from Q need to be included

in the total energy conservation equation [Eq. (1)].

The potential energy change associated with the ver-

tical density fluxes as a result of thermal expansion/

compression can be expressed as

zg
›r

›t
’ zg

›(wr)

›z
’2wdrg , (10)

where dr’ z›r/›z and wdr represents vertical density

fluxes. Thus, total energy conservation in the atmo-

sphere with consideration of air thermal expansion/

compression would be approximated as

2wdrg1 r
dE

t

dt
5Q1F

m
. (11)

In the atmosphere, molecular motions are responsible

for heat transfer in the surface viscous sublayer adjacent

to the ground, where the dramatic air thermal expan-

sion/compression occurs. Above it, turbulent mixing is

much more effective in transferring heat than molecular

diffusions. Because of the effective turbulent mixing

above the surface viscous sublayer and its contribution

to vertical density fluxes, the consequence of the ther-

mal expansion/compression as a result of thermal en-

ergy transfer at the surface can impact air flows above

the viscous sublayer where local thermal expansion/

compression is relatively small.

Although we use the air heating/cooling at the sur-

face as the examples for providing diabatic thermal

forcingQ into the system, physically, Eq. (11) captures

the potential energy change as a result of density fluxes

generated by air thermal expansion/compression in

general based on the ideal gas law and mass conser-

vation. In the atmosphere, water phase changes and

radiation of clouds can also provide similar diabatic

heating/cooling sources; similar physical processes can

occur. That is, vertical density fluxes can travel to a

distance where local Q is negligibly small such as

buoyancy fluxes under convective conditions.

b. Kinetic energy conservation

Inside the system, the familiar kinetic energy con-

servation equation with a constant air density can be

derived based onmomentum conservation (see the first

section of the appendix) as

r
dE

k

dt
52V � =p2 rwg1 «

k
, (12)

where «k is the rate of dissipation of mechanical energy

due to viscosity (Batchelor 1967):

«
k
5V

�
›s

xx

›x
1

›s
zx

›z

�
1w

�
›s

xz

›x
1

›s
zz

›z

�
. (13)

Because «k is responsible for energy cascades and

dissipation heating (e.g., Garratt 1992), «k is negative

in the atmosphere.

The kinetic energy conservation equation [Eq. (12)]

reveals that kinetic energy changes are derived through

FIG. 1. Schematic showing the connection between the external thermal forcing Q and kinetic energy changes through vertical density

fluxes in potential energy changes2wdrg (equivalent to thework done by the nonhydrostatic pressure perturbation2w›pQ/›z) generated by

(left) positive buoyancy associated with air thermal expansion during the daytime and (right) shear-generated vortices at night where the vertical

densitydistribution is contributed toby thermal compression.Theexternalmechanical forcing to the system is2= � (pV) and«.Note that although the

external thermal forcingQ is at the bottom of the system, its impact on the system can be transferred into the system through vertical density fluxes.
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the work done by mechanical forcings of the pressure

gradients 2V � =p, viscous stress work «k, and the gravity

body force 2rwg, which is essentially the negative po-

tential energy change. Specifically, 2V›p/›x contributes

to the kinetic energy change associated with horizontal

wind speed changes [rd(V2/2)/dt], and 2w(›p/›z1 rg)

contributes to the kinetic energy change associated with

vertical wind speed changes [rd(w2/2)/dt] (see the first

section of the appendix). The negative potential energy

change2rwg and the rate of the vertical pressure gradient

2w›p/›z can balance each other if the system is hydro-

statically balanced (›p/›z52rg); only the nonhydrostatic

pressure gradient part,2w(›p/›z1 rg) 6¼ 0, contributes to

kinetic energy changes. As shown in the appendix’s first

section, theCoriolis force leads to verticalmotions through

turning horizontal motions or vice versa and does not

change the kinetic energy of the system. Therefore, the

work done by the nonhydrostatic pressure forcing is the

only physical mechanism for increasing kinetic energy

through vertical motions; the work related to air viscosity

only reduces the mean kinetic energy. Overall, the kinetic

energy conservation equation [Eq. (12)] describes how

kinetic energy with an approximately invariant air density

can be increased or reduced mechanically but not where

energy for changing the kinetic energy comes from and

how kinetic energy changes are related to environmental

mechanical and thermal forcings.

Once the air density varies, the potential energy

change, 2wdrg, as in Eq. (11), also impacts kinetic

energy changes. Thus, the kinetic energy conservation

equation with consideration of the air density change is

�
r
dE

k

dt

�Q

[2wdrg1 r
dE

k

dt

52V � =p2wrg

�
11

dr

r

�
1 «

k

52V � =p2wrg1 q
NH

1 «
k
, (14)

where

q
NH

[2wdrg . (15)

The superscript Q in Eq. (14) is used to emphasize that

Eq. (14) represents the kinetic energy conservation

equation with consideration of the impacts of thermal

forcing Q as well as mechanical forcing Fm on kinetic

energy changes; for example, positive buoyancy (dr, 0)

enhances kinetic energy through thermal plumes. Es-

sentially, Eq. (14) is the same as the kinetic energy con-

servation equation derived based on the Boussinesq

approximation for momentum conservation; that is, ma-

jor impacts of air density changes on the atmosphere can

be approximately considered in the vertical direction only

(e.g.,Gill 1982;Mahrt 1986; Bannon 1996). Therefore, the

consideration regarding energy transfers used in deriving

Eq. (10) is essentially consistent with the Boussinesq

approximation for momentum transfer.

Because potential energy changes can balance kinetic

energy changes by vertical pressure gradients through

the hydrostatic balance as described above, another way

to understand the additional mechanical forcing qNH for

kinetic energy changes is that qNH represents the work

done by an additional vertical gradient of a pressure

perturbation pQ as a result of density and temperature

variations triggered by Q. That is,

q
NH

52wdrg[2w
›p

Q

›z
, (16)

where

›p
Q

›z
[ drg . (17)

Thus, qNH represents the work done by the non-

hydrostatic pressure gradient ›pQ/›z as a result of di-

abatic heating/cooling. Because the system experiences

not only mechanical forcing Fm but also thermal forcing

Q, the pressure p inside the system is not the ambient

pressure p but p1 pQ.

In the turbulent atmosphere, vertical density variations

are considered in decomposing air density into mean and

perturbed components, and qNH is essentially included in

the kinetic energy conservation equation (section 3). In

engineering textbooks, such as Kuo (2005), often gravity

is not considered. In that situation, the impacts of qNH on

energy conservation cannot be studied.

c. Thermal energy conservation

With consideration of air thermal expansion/

compression and its consequent impacts on potential

energy changes, the total energy conservation equation

[Eq. (11)] can be expressed as

�
r
dE

k

dt

�Q

1 r
dE

i

dt
1 r

dE
g

dt
5Q1F

m
. (18)

Substituting Eq. (14) and Fm [Eq. (3)] into Eq. (18), the

internal energy conservation equation constrained by

total energy conservation with consideration of air

density variations is

r
dE

i

dt
5Q1 «

t
2 q

NH
2p= �V , (19)

where
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xz
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1s

zz
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›z (20)

is the dissipation heating associated with kinetic energy

dissipation (see the second section of the appendix). The

dissipation heating is sometimes expressed as thermal

diffusion (e.g., Garratt 1992) or neglected in the litera-

ture. Because any viscous stress reduces large-scale air

motions, « has to be negative especially when the at-

mosphere consists of large coherent turbulent eddies

that extend down to the surface (Sun et al. 2016). The

atmospheric viscous stress « is responsible for energy

cascades «k and the energy dissipation to heat «t. Be-

cause both « and «k are negative and «t is always positive,

j«kj has to be larger than j«j. The dissipation heating «t
can be important especially when the other terms in the

thermal energy conservation equation [Eq. (23)] are

relatively small; even m’ 1:83 1025 kgm21 s21 is rela-

tively small for air temperature of 300K.

We now relate internal energy to thermal energy inside

the system. Using the relationship between specific en-

thalpy h and Ei (Kuo 2005), dEi/dt within the system can

be expressed as

dE
i

dt
5

dh

dt
2

1

r

dp

dt
1

p

r2
dr

dt
5 c

p

dT

dt
2

1

r

dp

dt
2

p

r
= �V , (21)

where cp is the specific heat for the air under constant

pressure andmass conservation [Eq. (8)] is used. Using the

definition of potential temperature,1 u5T(1000/p)R/cp ,

and the ideal gas law, we have

c
p

T

u

du

dt
5 c

p

dT

dt
2

1

r

dp

dt
. (22)

Substituting Eqs. (21) and (22) into Eq. (19), the thermal

energy conservation balance can be derived as

rc
p

T

u

du

dt
5Q1 «

t
2 q

NH
. (23)

Fundamentally, the thermal energy conservation

equation [Eq. (23)] is derived as the residual energy

balance between the total energy conservation equation

[Eq. (18)] and the kinetic energy conservation equation

[Eq. (14)]. Because total energy conservation includes

the impacts of thermal expansion/compression on en-

ergy changes, essentially the derived thermal energy

balance [Eq. (23)] also includes the impacts of thermal

expansion/compression on internal energy changes.

Because the additional mechanic forcing qNH is inter-

nally generated by vertical density fluxes associated

with Q, and is not an external forcing for total energy

changes, its appearance in the kinetic energy conserva-

tion equation has to balance its appearance in the

thermal energy conservation equation. Thus, a positive

qNH in the kinetic energy equation has to balance a

negative qNH in the thermal energy equation; that is, the

amount of the kinetic energy increase associated with a

positive qNH has to balance the same amount of the

thermal energy decrease associated with the negative

qNH. The derived thermal energy conservation equation

[Eq. (23)] reflects how changes in thermal and kinetic

energy within the system are connected through con-

straint of total energy conservation. If part of the rate of

the environment thermal forcing is used to change ki-

netic energy through air density changes, there would be

a lower rate of the environment thermal forcing for

changing thermal energy, as the total amount of thermal

and kinetic energy changes is constrained by total en-

ergy conservation. Because vertical density fluxes are

related to nonhydrostatic pressure gradient work lead-

ing to both kinetic and thermal energy changes, inter-

actions between kinetic and thermal energy changes

reflect the atmosphere self-adjustment process toward a

new state of the hydrostatic balance through interac-

tions between kinetic and thermal energy exchanges. If

the nonhydrostatic pressure perturbation is continu-

ously generated by vertical density fluxes associated

with diabatic heating/cooling somewhere in the at-

mosphere, qNH would be nonzero until its generation

process ceases.

The derived thermal energy conservation equation

clearly demonstrates different balance equations be-

tween temperature and other scalars such as atmo-

spheric compositions. Because heat transfer represents

energy transfer, it is capable of changing kinetic energy

while concentration changes of atmospheric composi-

tions cannot unless the concentration change can lead to

potential energy changes. Dissimilarities between tem-

perature and water vapor have indeed been observed in

1With significant water vapor changes, virtual potential tem-

perature can be used (Stull 1988).
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the literature (e.g., Cava et al. 2008; Van de Boer et al.

2014; Guo et al. 2016).

d. Physical differences between the traditional and
the derived energy conservation equations

In the atmosphere literature, the traditional thermal

energy equation relies on the first law of thermodynamics:

rdE
i
5

ð
Qdt1

ð
W dt , (24)

whereW is the rate of work done to the system [Eq. (24) is

the same as Eq. (1.5.2) in Batchelor (1967), except hereQ

and W have units of the rate of energy changes instead of

the amount of energy per unit mass as in Batchelor (1967)]

even through Eq. (24) requires equilibrium conditions

where kinetic energy is not considered. This traditional

practice is different from the approach in engineering

textbooks (e.g., Kuo 2005), where conservation of total

energy is explicitly considered as a basic physics principle

for general fluids, instead of the first law of thermody-

namics. Therefore, fundamentally, the difference is

whether we consider the first law of thermodynamics,

which is only valid for equilibrium conditions, or total en-

ergy conservation, which is valid for nonequilibrium con-

ditions, as a basic principle of physics for atmospheric flows.

Batchelor (1967) combined the kinetic and the thermal

energy conservation equations to derive Bernoulli’s theo-

rem for steady flow. By considering themechanical forcing

Fm to a system, he added2p= �V1 «t on both sides of the

kinetic energy conservation [Eq. (12)]. Because the term

2p= �V1 «t ‘‘represents the work done in deforming the

element without change of its velocity’’ (Batchelor 1967,

p. 152), that is W52p= �V1 «t, he combined the first

law of thermodynamics [Eq. (24)] with the kinetic energy

conservation equation leading to his Eq. (3.5.1), which

is essentially the total energy conservation equation.

Because 2p= �V associated with thermal expansion/

compression is not part of the kinetic energy conservation

equation, but is added to have the mechanical forcing Fm,

Q does not impact the kinetic energy conservation equa-

tion in his derivation. If we ignore the impacts of thermal

expansion/compression on vertical density fluxes, or po-

tential energy changes in the atmosphere, which is equiv-

alent to setting qNH 5 0 or pQ 5 0, Eq. (23) would result in

the traditional thermal energy conservation equation:

rc
p

T

u

du

dt
5Q1 «

t
. (25)

Similar to Batchelor (1967), Gill’s (1982) work also re-

sulted in total energy conservation [his Eq. (4.7.3)] by

adding the extra expansion/compression term (without

considering «t though) in the kinetic energy conservation

equation [his Eq. (4.6.1)], where he actually considered

pressure perturbation associated with density perturba-

tion. To cancel out the thermal expansion/compression

term added to the kinetic energy and the work term in the

first law of thermodynamics, he has to ignore the pressure

perturbation, which is again equivalent to assuming

pQ 5 0; that is, qNH5 0.

Without considering vertical density transfer as a

consequence of thermal expansion/compression on po-

tential energy changes, total energy also appears to be

conserved; however, the important physical connections

between thermal expansion/compression and potential

energy changes and interactions between kinetic and

thermal energy changes through potential energy

changes are not accounted for. Because of the famil-

iarity of the Boussinesq approximation in the atmo-

sphere community, impacts of the work through vertical

density fluxes on kinetic energy changes can be accepted

relatively easily. However, it is difficult to understand

the extra term qNH in thermal energy conservation

without understanding the constraint of total energy

conservation. That is, if we recognize the impacts of

vertical density fluxes in changing potential energy,

which in turn impacts kinetic energy changes, we have

to include the same term with the opposite sign in the

thermal energy conservation equation to keep total

energy conserved. The different physics between the

traditional and the derived thermal energy conserva-

tion equations [Eqs. (23) and (25)] is summarized

schematically in Fig. 2.

The magnitude of the vertical density fluxes on po-

tential energy changes or the magnitude of the pressure

perturbation pQ may be relatively small in comparison

with the environmental pressure gradient forcing on

kinetic energy changes especially near the surface where

vertical air motions are constrained by the surface, but it

can have the same order of magnitude as temporal

variations of air temperature. Different from «t, which is

always positive, qNH can be either positive such as during

the daytime or negative such as at night. Ignoring the

influence of qNH in thermal energy conservation can

lead to systematic biases of estimating air temperature

changes, that is, an overestimate of the air temperature

increase when qNH . 0 and an overestimate of the air

temperature decrease when qNH , 0.

3. Energy conservation equations in the
turbulent atmosphere

In this section, we derive the kinetic energy conser-

vation equation [Eq. (12)], where density variations are

explicitly included through turbulence perturbations,

and the derived thermal energy conservation equation
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[Eq. (23)] in the turbulent atmosphere. We use the tra-

ditional practice of decomposing each variable f into

the Reynolds-averaged mean value f and the pertur-

bation f0 5f2f as demonstrated in, for example, Stull

(1988). We then examine the kinetic and the derived

thermal energy balance equations up to second-order

moments (terms on the order of f02); the detailed deri-

vations are given in the third section of the appendix. All

of the other second-order-moments balance equations

related to the derived thermal energy conservation

equation, such as for temperature variances u
02

and

turbulent heat fluxes w
0
u
0
, are given later in the third

section of the appendix.

With the traditional assumptions used for the turbu-

lent atmosphere as in Stull (1988), 1) w � V, 2) negli-

gibly small terms of higher-than-second-order moments,

3) horizontal homogeneity within the system (V
0
f
0
’ 0

and ›f/›x’ 0) not the external horizontal pressure

gradient ›p/›x, and 4) the hydrostatic pressure balance

for the mean flow (›p/›z52rg), we Reynolds average

the kinetic and thermal energy balance equations.

By applying the Reynolds averaging to Eq. (12), the

term 2wdrg and r in rdEk/dt would be included as in

Eq. (14); thus, we use Reynolds averaging of the kinetic

energy balance in Eq. (12) (see the third section of the

appendix):

r

�
›E

M

›t
1

›e

›t

�
52V

›p

›x
2 r

›(V w0V 0)
›z

1 q
NH

1 «
k
, (26)

where

E
M
[

1

2
(V2 1w2)’

1

2
V2 , (27)

e[
1

2
(V 02 1w02) , (28)

q
NH

5 r
g

u
w

0
u
0
2
›w0p0

›z
, and (29)

«
k
’m

 
V
›2V

›z2
1V 0›

2V 0

›z2
1w0›

2w0

›z2

!
. (30)

FIG. 2. Schematic illustration of the differences between the traditional and the new concepts of kinetic Ek and

internal energy Ei conservation in terms of total energy conservation for a system experiencing both the external

thermal forcing Q. 0 and the external mechanical work 2= � (pV)1 « (V, wind vector; p, external pressure; «, the

viscous deformation stress to the system). For the atmosphere, kinetic energy changes are traditionally considered to

result from the mechanical forcing2= � (pV)1 «k only, while observations indicate that part ofQ is used for thermal

expansion/compression, leading to vertical density fluxes and potential energy changes, qNH, which contribute to

kinetic energy changes as well. Recognizing the contribution of qNH to kinetic energy changes, internal (or thermal)

energy changes are forced by Q2qNH, instead of Q, and «t 5 «2 «k to satisfy total energy conservation.
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Here, kinetic energy in the turbulent atmosphere is

decomposed into kinetic energy for mean motion

(MKE) EM and TKE for turbulent motion e. We keep

both MKE and TKE in the kinetic energy conservation

equation because of interactions between turbulent

andmean flows [the second term on the rhs of Eq. (26)].

The mechanical energy dissipation rate «k in Eq. (30) is

the work done by the shear stress associated with mean

motion [the first term on the rhs of Eq. (30)] as well as

turbulent motion [the remaining two terms on the rhs

of Eq. (30)] to the considered volume. It is clear that in

the turbulent atmosphere, qNH is generated by vertical

density fluxes associated with both heat and pressure

transfers [Eq. (29)].

Following the same procedure, the Reynolds-averaged

new thermal energy balance [Eq. (23)] for the turbulent

atmosphere (see the third section of the appendix) is 
›u

›t
1

›w
0
u
0

›z

!
5

u

c
p
rT

(Q2q
NH

1 «
t
) , (31)

where

«
t
5 «2 «

k

5m
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›V
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�2

1

�
›V

0

›z

�2

1 2

�
›w

0

›z

�2
#
. (32)

Without qNH, Eq. (31) would be the traditional thermal

energy conservation equation for the turbulent atmo-

sphere used in the literature (e.g., Garratt 1992). Dif-

ferent from Reynolds averaging the kinetic energy

balance [Eq. (12)], the extra term qNH cannot be ob-

tained by Reynolds averaging the traditional thermal

energy balance [Eq. (25)], but can be obtained from

the residual balance between the Reynolds-averaged

total energy balance [Eq. (1)] and the Reynolds-

averaged kinetic energy balance to ensure total en-

ergy conservation.

We now discuss interactions between the kinetic and

thermal energy changes in the turbulent atmosphere. Tur-

bulentmotion in the atmosphere can be generated either by

wind shear or positive buoyancy. Turbulence intensity

measuredbyTKEdepends not only on theenergyexchange

between TKE and MKE [the second term on the rhs of

Eq. (26)] but also on the rate of thework associatedwith the

vertical density fluxesqNH,which either enhances or reduces

TKE. In the literature, the impact of qNH on TKE is com-

monly split as turbulent buoyancy generation r(g/u)w
0
u
0

and theTKE transport2›w0p0/›z. The connection between
TKE and thermal energy is traditionally interpreted

through r(g/u)w
0
u
0
in kinetic energy and ›w

0
u
0
/›z in the

traditional thermal energy conservation equation. This

explanation may seem to be reasonable; however, ›w
0
u
0
/›z

is part of the thermal energy changes, and there is no cor-

responding term r(g/u)w
0
u
0
in the traditional thermal en-

ergy conservation equation. Besides, if w
0
u
0
from ›w

0
u
0
/›z

contributes to TKE changes, there is no additional con-

straint condition on quantifying the partition of w
0
u
0
be-

tween changing thermal energy and changing TKE. In

addition, physically the impact of thermal energy on TKE is

through vertical air density fluxes, which are related to both

temperature and pressure fluxes. The traditional thermal

energy conservation equation fails to include any impact of

pressure changes associated with Q on thermal energy

changes. As a result, the traditional thermal energy balance

does not satisfactorily explain the observed air temperature

changes in the atmosphere (more in section 4).

4. Observational evidence of potential energy
changes in the derived thermal energy
conservation equation

Using the field dataset from the 1999 Cooperative

Atmosphere–Surface Exchange Study (CASES-99),

which is described in Cuxart et al. (2002) and Sun et al.

(2013, 2015, 2016) for detailed observations and data

processes, we examine the role of qNH in temporal

variations of air temperature described in the derived

thermal energy conservation equation. In brief, the

data used here are thermocouple observations sampled

at 5 s21 from 0.2 to 5.9m above the surface; 5-min

block-averaged w
0
u
0
using sonic-anemometer data at

0.5, 1.5, 5, and 20m sampled at 10 s21; w0p0 using sonic-

anemometer and pressure measurements sampled at

2 s21 at 1.5 and 30m; and net radiation Rnet at 2m. As

the field campaign was not designed for any detailed

budget study of energy conservation, we only examine

evidence of the impacts of qNH on temporal variations

of air temperature in the derived thermal energy con-

servation equation. Based on the traditional thermal

energy conservation equation, air temperature changes

are closely related to vertical heat flux variations if

horizontal heat advection is negligibly small. We

choose two cases where horizontal heat advection is

negligibly small and vertical heat flux variations are

large so that temporal air temperature variations can

be easily captured: 1) the daytime of 10 October, when

the daytime wind speed was smallest during the entire

field campaign and the vertical convergence of heat

fluxes was large, and 2) the nighttime stable period

between 2100 and 2200 LST 11 October, when vertical

divergence of the heat fluxes was large.

We first describe the observed vertical variations of

turbulent heat flux w
0
u
0
near the surface during the

daytime. The turbulent heat flux w
0
u
0
is commonly
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related to turbulent momentum flux, w0V 0, as w
0
u
0
[

2u*u*, where u*[ jw0V 0j1/2. Based on Sun et al. (2013),

the vertical variation of u* with height is less than 10%

between 1.5 and 5m. Using the daytime observation of

sonic anemometers from the entire CASES-99 dataset,

we find that the standard deviation of potential tem-

perature su is linearly correlated with ju*j as u* is neg-

ative during the daytime (Fig. 3b), which is also reported

in Sun et al. (2012). Using the thermocouple measure-

ments, we find that the amplitude of the daytime tem-

poral variation of su decreases with height up to about

5–6m and the amplitude of su is about 3 times larger at

0.2m than at 5.9m around noon on the weak wind day of

11 October (Fig. 4a). The rapid decrease of su with

height indicates that w
0
u
0
decreases with height signifi-

cantly below about 5m, which is in contrast with the

common believe of the approximate invariance of w
0
u
0

(less than 10%–20% variations in the vertical) near the

surface. The decrease of w
0
u
0
with height is indepen-

dently confirmed by the directly estimatedw
0
u
0
using the

eddy-covariance method with sonic anemometers at 0.5

and 1.5m (Fig. 3d). Considering w
0
u
0
at 1.5m in Fig. 3d

was estimated from the first period of the experiment

when the daily maximum Rnet was relatively high

(Fig. 3c) and w
0
u
0
at 0.5m was estimated during the

second period of the experiment when the daily maxi-

mum Rnet was relatively low, the vertical difference of

w
0
u
0
between 1.5 and 0.5m for a given day would be

larger than the vertical difference of w
0
u
0
between the

two levels shown in Fig. 3d.

We then examine the phase relationship between the

temporal variation of air temperature and the vertical

convergence of turbulent heat fluxes on 10 October,

which should be in phase if the traditional thermal

energy conservation equation [Eq. (31) with zero rhs]

is valid. The close correlations between the variations

of Rnet, TKE, and the standard deviations of w, sw

(Figs. 4a,b), and w
0
u
0
(Fig. 4f) indicate that turbulence

is mainly generated by positive buoyancy from the

heated surface when the wind speed is steadily weak

(Fig. 4d). Because the largest vertical decrease of su is

around noon (Fig. 4c), the largest vertical convergence

of turbulent heat fluxes should be around noon for this

day. However, the observed largest temporal increase

in air temperature below 5.9m happens around 0800

LST, right at the time when the significant increase of

w
0
u
0
begins (Fig. 4e). The inconsistency between the

temporal variations of the air temperature and the

vertical convergence of w
0
u
0
suggests that the tradi-

tional thermal energy balance is not valid.

We then examine the contribution of vertical density

fluxes qNH [Eq. (29)] to the increase in air temperature

for this day. We find that the values of ›w0p0/›z based on

the observations of w0p0 at 1.5 and 30m are negative and

also follow the daytime variation of Rnet (Fig. 4f), which

is consistent with the observations in Högström (1990).

Thus, both (rg/u)w
0
u
0
and 2›w0p0/›z in qNH are positive

and have similar diurnal variations (Fig. 4f). The posi-

tive qNH would increase the kinetic energy, which is in-

deed observed in the simultaneous increase of TKE and

qNH around 0800 LST, and would reduce the temporal

variation of air temperature, which is indeed shown in the

sharp increase of the observed qNH at exactly the same

time as ›u/›t starts to decrease from its maximum value

(Fig. 4). Because the diurnal variation of w0p0 is observed
to be maximum around noon at all the observation

heights, the in-phase relationship between the rapid in-

crease of qNH and the rapid decrease of ›u/›t should not

be affected by any observational error in the magnitude

of ›w0p0/›z because of the relatively large height differ-

ence between 1.5 and 30m for the measurements of w0p0.
The observation qualitatively confirms the contribution

of qNH to the change in thermal energy.

We now investigate the impacts of qNH on nighttime

air temperature changes between 2100 and 2200 LST on

the night of 11 October when the heat flux divergence is

relatively large. When the net radiation starts to de-

crease in the afternoon, less heat is transferred from the

heated surface to qNH, as shown in the decreases of both

(rg/u)w
0
u
0
and 2›w0p0/›z in Fig. 4f. Because of the de-

creasing downward solar radiation during the afternoon

while the air is still warm, the stable layer near the sur-

face gradually develops. The available thermal forcing

for changing the thermal energy gradually becomes

negative, leading to a decrease in air temperature during

the afternoon. At night, the air temperature adjacent to

the surface decreases as a result of molecular thermal

conduction from the radiatively cooled surface. When

wind speed near the surface increases (Fig. 5a), wind

shear due to the wind speed increase with height gen-

erates turbulence. Turbulent mixing transfers cold air

upward and warm air downward, leading to the upward

density flux and the net downward turbulent heat flux

(Sun et al. 2012), which is observed at 5 and 20m during

2100–2200 LST 11 October (Fig. 5b). Because the tem-

poral variations of air temperature from the surrounding

six satellite stations at the same height within the

500m 3 500m area occur simultaneously between 2100

and 2200 LST (not shown), there is no obvious signifi-

cant temperature advection. Based on the traditional

thermal energy conservation equation, the observed

positive ›w
0
u
0
/›z would lead to negative ›u/›t. However,

we find that ›u/›t is slightly positive around 6m and near

zero at 20m during this period (Fig. 5d). Based on

the derived thermal energy conservation equation, the
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available thermal forcing for cooling the air would be

reduced as a result of the negative qNH from the negative

(rg/u)w
0
u
0
and the near-zero2›w0p0/›z (Figs. 5b,c). The

negative qNH indicates that there is an extra positive

thermal forcing for the observed positive ›u/›t. The

viscous heating «t is too small to contribute the tem-

perature change here considering the magnitude of the

air viscosity m and the weak wind speed associated with

the stable conditions.

Examples of both the daytime and nighttime obser-

vations suggest that the traditional thermal energy con-

servation balance cannot explain the observed diurnal

variation of air temperature. Including qNH in the thermal

energy conservation equation could qualitatively explain

the temporal variation of air temperature during the day

and night. The gradual decrease of ›u/›t from its peak

value around 0800 LST as qNH gradually increases during

the daytime suggests that the magnitude of qNH could be

on the same order of magnitude as ›u/›t, as the vertical

density flux has to be relatively small near the surface due

to w5 0 at the surface. However, the presence of qNH in

the derived thermal energy conservation equation is

physically important in explaining the observed diurnal

variation of air temperature. Quantifying the contri-

bution of qNH to ›u/›t requires better observations near

the surface. As the term qNH depends on the vertical

density fluxes and the vertical scale of turbulence

eddies increases with height (e.g., Sun et al. 2016), the

role of qNH in atmospheric thermodynamics such as

cyclogenesis could be significant.

5. Summary

Applying total and kinetic energy conservation, we revisit

thermal energy conservation (related to internal energy) in

the atmosphere. Kinetic energy conservation is impacted

not only by environment mechanical work Fm but also by

potential energy changes related to vertical density fluxes

resulting from accumulated thermal expansion/compression

from net heating Q (diabatic thermal forcing), qNH, even

though the atmosphere is approximately incompressible.

The effects of thermal expansion/compression on air

FIG. 3. (a) Diurnal variations of the standard deviation of potential temperature su within 5-min segments from

the sonic anemometer measurements at 1.5m (black dashed line) and from thermocouple (TC) measurements at

the labeled heights on 11Oct 1999. (b) The bin-averaged daytime relationships between u* andsu at the two heights

based on the entire field data. (c) The daily maximum value of net radiationRnet during the periods when the lowest

sonic anemometer values were at z 5 1.5 and 0.5m, marked in black and red, respectively. (d) The bin-averaged

daytime sensible heat flux, QH 5 rcpw
0
u
0
, as a function of net radiation at the two heights, which shows that QH is

consistently larger at 0.5m than at 1.5m for a given Rnet.
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motions should not be confused with air compressibility

as air compressibility refers to air volume changes with

pressure at a constant temperature even though both lead

to = �V 6¼ 0. Vertical density fluxes can be generated by

thermal expansion at a distance, or by mechanically

generated vertical mixing in the stably stratified atmo-

sphere that has been contributed to by diabatic cooling.

With consideration of the impacts of qNH on kinetic en-

ergy changes and the constraint of total energy conser-

vation on the sum of the kinetic, potential, and internal

energy changes, the thermal energy balance should in-

clude not only Q and dissipation heat «t but also qNH.

The presence of qNH in both kinetic and thermal en-

ergy conservation equations clearly demonstrates the

FIG. 4. Diurnal variations of (a) the net radiation Rnet and the standard deviation of the vertical velocity sw from

5-min segments, where sw is related to the contribution of w to TKE, (b) TKE e at 1.5m, (c) the 5-min standard

deviation of the thermocouple temperature su at the labeled heights, (d) wind speed V at 5m, (e) the temporal

variation of the thermocouple temperature ›u/›t at the labeled heights, and (f) the kinematic heat flux (g/u)w
0
u
0
at

1.5m, ›w0p0/›z based on the measurements of w0p0 at 1.5 and 30m, and qNH 5 (g/u)w
0
u
0
2 ›w0p0/›z on the steady

weak wind day of 10 Oct. The vertical cyan lines in (e) and (f) mark the time when ›u/›t starts to decrease and qNH

starts to increase. A 25-min running mean is applied for all plots.
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physical connections between kinetic and thermal energy

exchanges, which are stability effects on atmospheric

motions. Interactions between kinetic and thermal

energy also reflect an important transition between a

nonhydrostatic-pressure-balanced state and a hydrostatic-

pressure-balanced state in the stratified atmosphere. The

observed simultaneous increase of qNH and the decrease

of the temporal variation of air temperature during the

daytime, as well as the observed air temperature increase

with qNH, 0 when vertical heat fluxes are divergent at

night, presented in this study qualitatively confirm the

suggested inclusion of qNH in the thermal energy balance.

As qNH varies diurnally near the surface, it has systematic

impacts on temporal variations of air temperature even

though its magnitude near the surface could be rela-

tively small in comparison with the horizontal pressure

gradient forcing on kinetic energy changes. With strong

vertical density fluxes associated with thermal expansion/

compression as a result of large diabatic heating, qNH

could contribute significantly to air motions and ther-

modynamic structures.

The traditional thermal energy conservation equation

for the atmosphere is guided by the first law of ther-

modynamics even though it is only valid for an equilib-

rium state for which air motions are not included.

Because the first law of thermodynamics does not ex-

plicitly include air motions, except for molecular mo-

tions, the impacts of environmental mechanical and

thermal forcing on a system are somewhat isolated:

mechanical forcing is used for kinetic energy changes

and thermal forcing is used for thermal energy changes

only. Applying the first law of thermodynamics to a

nonequilibrium system not only violates the required

equilibrium condition, but also misses the contribution of

thermal forcing to air motions. Vertical convergence/

divergence of heat fluxes in the traditional thermal energy

balance represents internal energy changes, not potential

energy changes associated with thermal expansion/

compression. Therefore, in the traditional thermal en-

ergy balance, qNH is implicitly zero. Ignoring the poten-

tial energy changes associatedwith vertical density fluxes

in both the kinetic and thermal energy conservation

FIG. 5. (a) The wind speed V, (b) (g/u)w
0
u
0
, (c) (1/r)›w0p0/›z based on the measurements of w0p0 at 1.5 and 30m,

and (d) the temporal variation of potential temperature ›u/›t as a function of LST during the night of 11 Oct, where

the period of interest is between the red dashed lines.
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equations appears to satisfy total energy conservation, but

misses important impacts of thermal expansion/compres-

sion on air motions and thermodynamics, and results in an

unsatisfactory explanation of the observations. In practice,

the impacts of vertical density variations are often con-

sidered in the momentum balance, such as the Boussinesq

approximation, which is equivalent to including qNH in

kinetic energy conservation. Applying the traditional

thermal energy balance without including qNH while in-

cluding qNH in the kinetic energy balance would violate

total energy conservation and lead to systematic biases in

estimates of air temperature changes.

The derived thermal energy conservation equation also

demonstrates that temperature and atmospheric compo-

sitions have different balance equations. Unlike regular

scalars such as atmospheric compositions, temperature

transfer is associated with energy transfer, and impacts

not only thermal energy changes but also kinetic energy

changes.Differences between the derived thermal energy

balance and the conservation equation of atmospheric

compositions may shed light on observed dissimilarities

between temperature and water vapor in the literature.

The derived thermal energy conservation equation

could also potentially improve our understanding of

the observed atmospheric thermodynamic structures,

for example, in explaining the well-observed surface

energy imbalance problem, which is based on the tra-

ditional thermal energy balance. Impacts of the derived

thermal energy balance on atmospheric thermody-

namics could be important not only in the atmo-

spheric boundary layer, as demonstrated in this study,

but also in large-scale and mesoscale atmospheric and

oceanic thermodynamics whenever vertical density

fluxes prevail in space. The concept of vertical den-

sity fluxes in connecting kinetic and thermal energy

changes with consideration of total energy conserva-

tion could also contribute to a better understanding

of the available potential energy in the literature

(e.g., Tailleux 2013). Further field and laboratory

investigations into energy conservation, especially to-

tal and thermal energy conservation, are needed to

quantitively verify the derived thermal energy balance.

Exploration of interactions between kinetic and ther-

mal energy changes by numerical models would re-

quire consideration of thermal expansion/compression

in generating vertical density fluxes in both kinetic and

thermal conservation equations because all current

numerical models including high-resolution ones are

based on the traditional thermal energy balance, in

which thermal expansion/compression is not explicitly

included to relate to air motions and atmospheric

thermodynamic structures.
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APPENDIX

Derivation of Energy Conservation Equations

a. Kinetic energy conservation

For a two-dimensional flow (V and w in the directions

of x and z), the horizontal and the vertical momentum

balance equations for a small-volume system can be

expressed as (e.g., Kuo 2005)

r
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where m is the dynamic air viscosity and = �V5
›V/›x1 ›w/›z. Note that the above momentum balance

equations implicitly assume that there is no air density

variation. The equations for the horizontal and vertical

contributions of kinetic energy can be derived by mul-

tiplying Eq. (A1) by V and Eq. (A2) by w as
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Adding Eqs. (A3) and (A4), we have the conservation

equation for kinetic energy, Ek 5 1/2(V2 1w2), as

r
dE

k

dt
52V
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2w

�
›p

›z
1 rg

�
1 «

k
, (A5)

where
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represents the mechanical stress work to the system or

the kinetic energy dissipation («k , 0).

With consideration of theCoriolis effect, the extra forcing

for thewind acceleration in a three-dimensional flow of u, y,

and w in the orthogonal directions of x, y, and z would be

du

dt
5 � � � 1 2V

y
w2 2V

z
y , (A7)

dy

dt
5 � � � 1 2V

z
u2 2V

x
w, and (A8)

dw

dt
5 � � � 1 2V

x
y2 2V

y
u , (A9)

where V5 (Vx, Vy, Vz) is the angular velocity of

Earth. To obtain the kinetic energy balance equation,

we add Eq. (A7) multiplied by u, Eq. (A8) multiplied

by y, and Eq. (A9) multiplied by w; thus, the change in

total kinetic energy resulting from the Coriolis force

would be

u(2V
y
w2 2V

z
y)1 y(2V

z
u2 2V

x
w)

1w(2V
x
y2 2V

y
u)5 0: (A10)

That is, the Coriolis effect does not contribute to changes

in kinetic energy, (u2 1 y2 1w2)/2.

b. Work associated with viscosity

Here, we first expand the viscous stress for total

energy conservation «. Substituting Eqs. (5)–(7) into

Eq. (4), we have
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The heating associated with the energy dissipation «t in

Eq. (20) can be obtained by substituting Eqs. (5)–(7)

into Eq. (20), or by subtracting Eq. (A6) fromEq. (A11);

that is,

«
t
5m

(
2

"�
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�
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�2
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�
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2
2

3
(= �V)2

)
. (A12)

The above equation for «t indicates that «t is always

positive unless air expansion/compression = �V 6¼ 0 for

the approximately incompressible atmosphere is ex-

tremely large based on the discussion of the differences

between air expansion/compression and air compress-

ibility in the text.

When the work associated with the air expansion/

compression is negligibly small compared to other en-

ergy transfers in «, «k, and «t, that is, = �V’ 0 is ap-

proximately valid in Eqs. (A11), (A6), and (A12), «, «k,

and «t can be simplified as
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c. Turbulent atmosphere

1) CONSERVATION EQUATIONS OF KINETIC AND

THERMAL ENERGY IN THE TURBULENT

ATMOSPHERE

Here, we derive the conservation equations of kinetic

and thermal energy for the turbulent atmosphere. Be-

cause of the effectiveness of turbulence in heat transfer

in comparison with molecular thermal transfer, the air

expansion/compression associated with molecular

motions can be assumed to be approximately negli-

gible (i.e., = �V’ 0 in the turbulent atmosphere).

Following the traditional approach for deriving

Reynolds-averaged equations as in Stull (1988), we

decompose any variable f in the balance equation

as f5f1f0, where f and f0 represent the Reynolds

mean and turbulent components. The turbulence

balance equation can be obtained by Reynolds aver-

aging the decomposed balance equation. As practiced

in the traditional derivation of any turbulence balance

equation, we apply the following assumptions: 1)

f0/f � 1; 2) terms with higher-than-second-order-

moment terms, for example, f03, are negligibly small

(i.e., f03 ’ 0); 3) Reynolds-averaged horizontal com-

ponents inside the considered system are much

smaller than Reynolds-averaged vertical components

(i.e., V
0
f
0 � w

0
f
0); 4) the mean vertical motion is

negligibly small (i.e., w’ 0); 5) ›V 0/›x1 ›w0/›z’ 0;

and 6) the mean background flow is hydrostatically

balanced (i.e., ›p/›z’2rg). The last assumption im-

plies that qNH is entirely associated with turbulent

mixing.

To obtain the Reynolds-averaged kinetic energy

conservation equation [Eq. (A5)], we first Reynolds-

average the decomposed dEk/dt as

dE
k
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5

d(V1V 0)2

dt
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where EM [ (1/2)(V2 1w2)’ (1/2)V2 and e[ (1/2)

(V 02 1w02) represent kinetic energy for MKE and

TKE, respectively, and D/Dt5 ›/›t1V›/›x1w›/›z.

We then Reynolds-average all the terms on the right-

hand side of Eq. (A5) as
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In Eqs. (A17) and (A18), the definitions of potential

temperature u5T(1000/p)R/cp and the ideal gas law

p5 rRT are applied, such that

r0 5 r

�
p0

p
2

T 0

T

�

5 r

"
2
u0

u
1

 
11

R

c
p

!
p0

p

#
’ r

u0

u
. (A20)

In Eq. (A20), (p0/p)(12R/cp) � u0/u is also used based

on the CASES-99 observations of u0/u’su/u’ 1/3005
33 1023 and p0/p’sp/p’ 0:02/10005 23 1025. Com-

bining Eqs. (A16)–(A19), we have the Reynolds-

averaged kinetic energy equation:
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Note that decomposing the kinetic energy balance

equation [Eq. (A5)] contribution of density variations to

kinetic energy changes is implicitly included in the de-

composed r. Reynolds averaging the decomposed ki-

netic energy balance indicates that qNH represents a

coherent contribution between w0 and r0, while the

contribution of the density variations to other terms is

Reynolds averaged out based on the assumptions listed

for Reynolds averaging.

Following the same procedures with the same as-

sumptions, the Reynolds-averaged lhs of the derived

thermal energy conservation [Eq. (23)] is

c
p
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u
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Thus, the Reynolds-averaged new thermal energy

conservation equation [Eq. (23)] becomes
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where
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2) BALANCE EQUATIONS FOR TEMPERATURE-
RELATED VARIABLES

With all the assumptions used above, the turbulence-

perturbed thermal energy equation [Eq. (23)] can be

obtained by subtracting the Reynolds-averaged Eq. (23)

from the decomposed Eq. (23) as

rc
p
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�
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›t
1w0›u
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�
’Q0 1 «0t , (A25)

where

«0t 5 2m
›V
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›V 0

›z
and q0

NH ’ 0. (A26)

Multiplying Eq. (A25) by u0 and Reynolds averaging the

equation, we have
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52w
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where u
0
«0t ’ 0.

The turbulence-perturbed vertical momentum con-

servation with all the assumptions used above is

›w0

›t
52
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r

›p0

›z
1 g

u0

u
. (A28)

Adding Eq. (A28) multiplied by u0 to Eq. (A25) multi-

plied by w0, and Reynolds averaging the resulting

equation, we have the balance equation for w
0
u
0
:

›w
0
u
0

›t
’2w02 ›u

›z
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(A29)

where

w0«0t 5w0«0 2w0«0k 5 2m
›V

›z

›w0V 0

›z
. (A30)

The above derivations indicate that for small turbulent

perturbations, q0
NH ’ 0 if we ignore third-order-moment

terms. Under these conditions, the impacts of qNH on the

atmosphere are expected to be only important in regard

to the changes in mean air temperature through qNH

[Eq. (A23)], but less so in terms of the changes in tem-

perature fluctuations [Eq. (A27)] and turbulent heat

fluxes [Eq. (A29)].
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