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ABSTRACT

We study the fiow of a density-stratified fluid past a three-dimensional obstacle, using a numerical model.
Our special concern is the response of the fluid when the Froude number is near or less than unity. Linear
theory is inapplicable in this range of Froude number, and the present numerical solutions show the rich variety
of phenomena that emerge in this essentially nonlinear flow regime. Two such phenomena, which occupy Parts
1 and II of this study, are the formation of a pair of vertically oriented vortices on the lee side and a zone of
flow reversal on the windward side of the obstacle. The lee vortices have been explained as a consequence of
the separation of the viscous boundary layer from the obstacle; however, this boundary layer is absent (by
design) in the present experiments and lee vortices still occur. We argue that a vertical component of vorticity
develops on the lee side owing to the tilting of horizontally oriented vorticity produced baroclinically as the
isentropes deform in response to the flow over the obstacle. This deformation is adequately predicted by linear
gravity-wave theory, which allows one to deduce, using the next-order correction to linear theory, the existence
of a vortex pair of the proper sense in the lee of the obstacle. Thus, the lee vortices are closely associated with
the dynamics of gravity waves. The generation of the lee vortices may also be understood as a consequence of
Ertel's theorem which in the present circumstance demands that vortex lines adhere to isentropic surfaces—
since the isentropes are depressed behind the hill, the vortex lines must run upward and downward along the
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depression implying vertically oriented vorticity.

1. Introduction

The original motivation for this work was the desire
to understand why cloud “bands™ form persistently
windward of the island of Hawaii. Smolarkiewicz et al.
(1988) have demonstrated by means of numerical ex-
periments and field observations that these cloud bands
may be understood in terms of the effectively inviscid
response of a density-stratified fluid flowing past a
three-dimensional obstacle at low Froude number.
(The Froude number, Fr = U/Nh, where U is the flow
speed, his the height of the obstacle, and N, the Brunt-
Viisilld frequency, is a measure of the stratification;
in the Hawaiian situation, Fr ~ 0,1~0.4.) In particular,
it was shown that on the windward side a zone of flow
reversal forms at low Fr; associated with this zone is
the convergence they believe to be primarily responsible
for Hawaii’s windward cloud band. The other salient
feature that appeared in their numerical experiments
was intense vertically oriented vortices on the lee side
of the island, also at low Fr. In Part I of this study we
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investigate the mechanics of the lee vortices through
idealized numerical experiments and analytical theory;
in Part II we will, by similar means, concentrate on
the windward flow-reversal zone.

Although the computations alluded to above were
effectively inviscid, and for a low-aspect-ratio (height/
length ~ 0.05) obstacle, a number of features typically
observed in several moderate-Reynolds-number, as-
pect-ratio-unity laboratory flows (Brighton 1978; Hunt
and Snyder 1980; Castro et al. 1983; Snyder et al. 1985)
were obtaihed. In the laboratory studies, the lee vortices
have been attributed to the separation of the viscous
boundary layer from the lower surface. However, in
the numerical experiments there was (by design) no
viscous boundary layer because a ‘‘zero-stress” (or
“free-slip”) boundary condition was applied on the
lower surface and lee vortices still formed. It was for
this reason Smolarkiewicz et al. (1988 ) conjectured that
the lee vortices observed in stratified-flow laboratory
experiments and in relevant atmospheric flows could
be generated by a purely inviscid process.

The existence of a lee vortex implies vertically ori-
ented vortex lines in the vicinity of the vortex center.
In the idealized calculations reported on herein there
is no vertically oriented vorticity (hereinafter, simply
“vertical vorticity”) in the base state and no direct gen-
eration of vertical vorticity at the side walls of the ob-
stacle in consequence of the zero-stress conditions
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there. Hence the lee vortices that develop must acquire
their vertical vorticity through the tilting of horizontal
vorticity into the vertical. However, the base flow is
constant over space and so possesses zero horizontal
vorticity. We shall demonstrate that it is the horizontal
vorticity generated baroclinically (as the stratified flow
passes over the obstacle) and tilted behind the obstacle
that accounts for the vertical vorticity of the lee vortices.
The laboratory studies indicate that the upwind flow
reversal could be a manifestation of the separation of
the windward boundary layer as it experiences the ad-
verse pressure gradient associated with the slowing of
the wind upon reaching the obstacle and/or upwind
effects such as those known to occur in effectively in-
viscid, two-dimensional, stratified flow (e.g., Pierre-
humbert and Wyman 1985). In the present numerical
experiments we eliminate the possibility of the former
mechanism since we apply zero-stress conditions at the
lower surface; in this manner we can isolate the effec-
tively inviscid aspects of the three-dimensional stratified
flow. We find that a stagnation point occurs on the
upwind side of the obstacle as Fr passes below fhat
indicated by Smith’s (1980) linear calculation for
steady, stratified flow over a bell-shaped obstacle; we
elaborate on this, and investigate the effects of having
the obstacle elongated in the cross-stream direction in
Part IL
Stratified flow past an obstacle for Fr ~ 0.1-0.5 is
not covered by existing theories. Linear gravity-wave
theories (e.g., Crapper 1959; Smith 1980) are formally
valid when Fr > 1 while potential-flow-type theory
(Hawthorne and Martin 1955; Drazin 1961) is valid
when Fr < 1. Thus, numerical simulation is presently
the only way to gain access to the dynamics of the flow
in this range of Fr. From the viewpoint of atmospheric
applications the range Fr ~ 0.1-0.5 is of special in-
terest: considering typical tropospheric values of U
~ 10ms'and N =~ 0.01 s results in Fr ~ 1/h
[km]. Thus flow over mountains of height exceeding
~2 km will have Fr < (.5. Natural flows characterized
by Fr < 0.1 will be sensitive to the effects of surface
thermal forcing (Smolarkiewicz et al. 1988); these ef-
fects render the previously discussed features peculiar
to low-Fr stratified flow far less dominant. To isolate
the inviscid aspects of the flow as well as to make our
" results comparable to existing theories, we shall focus
herein on nonrotating, effectively inviscid, uniformly
stratified flow past simple three-dimensional obstacles.
To retain a connection with actual atmospheric flows,
we shall limit our study to slender obstacles that are
" geometrically similar to mesoscale mountains (and in
particular, to the island of Hawaii).

In section 2 we present a brief description of the
model and the experimental design. In section 3 we
discuss an experiment consisting of a series of uniform-
flow simulations with Fr varying from 2.2 to 0.055
where, in order to compare our results with those of
linear theory (Smith 1980), we use a three-dimen-
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sional, bell-shaped mountain. This experiment shows
that the lee vortices and the windward stagnation ap-
pear as Fr v 0.5 (for \ read “passing from above to
below™). In section 4 we investigate the dynamics of
the lee vortices. Section 5 contains a discussion and
summary of our conclusions.

2. Model description and design of the experiment

The numerical model used in this study is that de-
veloped by Clark (1977) and Clark and Farley (1984).
The model is a finite-difference approximation to the
anelastic, nonhydrostatic equations governing atmo-
spheric motion. The model equations are cast in a
nonorthogonal, terrain-following system of coordi-
nates. The finite-difference formulation of the mo-
mentum equations employs the Arakawa (1966 )-Lilly
(1965) second-order algorithm and the second-order-
accurate, positive-definite advection transport algo-
rithm of Smolarkiewicz (1984) is used for all scalar
conservation equations. The resulting algorithm for the
evaluation of the entire system of model equations is
second-order-accurate in time and space (Smolar-
kiewicz and Clark 1986). The fully interactive nesting
scheme of Clark and Farley (1984) allows for simul-
taneous integrations of up to three different domains,
each with different resolution.

The boundary conditions for the model variables
are specified only for the outermost domain. They in-
clude free-slip conditions for the velocity components
and zero-flux-type conditions on all scalar variables at
the upper and lower surfaces of the model. In order to
prevent reflection of vertically propagating gravity
waves from the model top, Rayleigh damping and
Newtonian cooling are employed in the upper -portion
of the model domain; grid nesting is not used in the
damping region. The lateral boundary conditions are
approximated by an open-boundary extrapolation
scheme. .

The philosophy of the present experimental design
is to proceed incrementally from the flow regime where
linear theory applies toward the nonlinear regime. The
measure of the nonlinearity is the Froude number, U/
Nh; all experiments reported herein have a uniform
upstream flow in the negative x direction and constant
N. Smith (1980) gives the linear solution for steady,
hydrostatic, stratified flow past a three-dimensional
bell-shaped obstacle:

atx,n) = A1+ (222) + (227 o

To facilitate comparison with linear theory we adopt
(1) as the obstacle for study. Since we are interested in
mesoscale mountains (such as Hawaii ), we fix the ob-
stacle height 2 = 0.12L, :

The experiments discussed herein are for Froude
numbers 2.2, 1.1, 0.66, 0.55, 0.44, 0.33, 0.22, 0.11,
and 0.055. The model covers a horizontal domain of
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20L X 20 L with a uniform mesh of 50 X 50 grid points
and a depth of 6%# is covered by 80 equally spaced
points (Az = i/12). In the experiments with Fr < 0.66
the gravity wave absorber fills the upper half of the
domain. In order to accommodate the increased ver-
tical wavelength of the standing mountain wave in the
experiments with Fr = 2.2 and Fr = 1.1, we employed
an additional, interactively nested, outer model with
the same horizontal domain and resolution, but with
a depth of 33%h covered by a vertical grid increment
five times larger than in the lower domain. In the latter
two experiments the absorbing layer fills the upper half

of the outer model. In all experiments the explicit vis-

cosity is set to zero.

Several methods to begin the computations were
tested. The initial flow was given either by: 1) approx-
imately two-dimensional, horizontal, potential flow
[similar to the primary flow in Drazin’s (1961) theory],

2) impulsive startup with absorption of gravity waves

throughout the entire domain during three Brunt-
Viisdlld periods, or 3) the three-dimensional potential-
flow solution. We found that the quasi-stationary so-
lutions reached after T = tU/L ~ 3 are not sensitive
to the startup procedure. After this time the solution
contains all the flow features of the solution at much
later times. Unless otherwise stated, the solutions will
be considered after 7’ ~ 9 when the flow is essentially
steady.

3. The Froude-number dependence of flow past a three-
dimensional, bell-shaped obstacle

a. Comparison with linear theory.

The Froude number may be thought of as the ratio
of the mean to the perturbation wind speed since the
latter ~ | Nh|. Therefore requiring smail-amplitude
perturbations for the validity of linear theory is tan-
tamount to requiring Fr > 1. The nonlinéar two-di-
mensional theory embodied in Long’s equation (Long
1953) requires for validity no flow reversal. Smith
(1977) discusses that flow stagnation occurs in those
solutions as Fr passes below unity.

Figures 1-3 display the salient features of the steady-
state solutions for Fr = 2.2, 0.66, 0.22, 0.055. Figure
1a—-d shows the appearance of lee vortices in the surface
streamline pattern (projected onto the x — y plane) as
Fr decreases. To facilitate comparison with Smith’s
(1980) calculation we show in Fig. 2a-d the displace-
ment field of the undisturbed isentropic surface at z/
h = = Fr/4 (except for Fig. 3d where z/h = 97 Fr/
4). Finally, Fig. 3a—-d shows the streamlines in the ver-
tical cross section through the center plane:

The solution shown in Figs. 1a, 2a and 3a compares
well with Smith’s (1980) linear solutions: the surface
streamline pattern and the displacement field are vir-
tually the same as shown in Smith’s (1980) Fig. 4 and
Fig. 1b, respectively. The vertical cross section in Fig.
3a shows the vertically propagating-wave pattern fa-
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miliar from two-dimensional linear theory (Queney
1948) as discussed by Smith (1980, see his Fig. 5).

Inference from linear theory at Fr = 0.66 is highly
uncertain since the theory predicts isentropes from
above the ground to pass below in the lee as Fr N\ 2
(Smith, 1980). Thus linear theory breaks down (locally
at least) long before the value Fr = 0.66 is reached;
nonetheless, there are some comparisons worth mak-
ing. The displacement field in Fig. 2b still resembles
that shown in Smith’s (1980) Fig. 1b in that it exhibits
two separate troughs straddling the obstacle on the lee
side, although the isentrope has been displaced to the
lower surface as indicated by the absence of contour
lines. The lateral deflection of surface streamlines on
the lee side, shown in Fig. 1b, increased considerably,
in qualitative agreement with Eq. (43) of Smith (1980).
The trough of the vertically propagating wave in Fig.
3b moves upwind and becomes narrower, indicating
the tendency toward collapse of the isentropic surfaces
on the lee slopes of the mountain, again in agreement
with Smith’s (1980) predictions.

When Fr passes below 0.5 (approximately) the sur-
face streamline pattern evinces a pair of vortices down-
wind and a small region of reversed flow on the upwind
side (Fig. 1c; Fr = 0.22). Figure 2c shows that the
region within which the isentropes descend to the lower
surface has enlarged. Figure 3c indicates that the ver-
tically propagating mountain wave is far weaker, and
below the obstacle top on the lee side, there is a recir-
culating flow associated with the lee vortices. As re-
marked upon above, linear theory is technically invalid
at these low values of Fr; this, notwithstanding, Smith
(1980) has shown that the linear three-dimensional
calculation of the perturbation velocity in the x direc-
tion at the surface implies that stagnation occurs at x/

= +2/2 when Fr = 2/ (3\@ ) ~ 0.4, values remark- -
ably close to those obtained here. The almost simul-
taneous appearance of reversed flow on the lee side is
beyond any reasonable interpretation from linear the-
ory as its predictions for the flow there are absurd as
Fr \ 2. The most one can say is that linear theory
predicts the collapse of the isentropes to the ground as
Fr N 2 and that we observe this tendency in the non-
linear model; however, nothing particularly dramatic
occurs until Fr ~ 0.5.

For Fr = 0.055, the windward flow is nearly hori-
zontal as the displacements are very small (Fig. 2d)
and the streamlines in the vertical cross section (Fig.
3d) are nearly flat. The lee vortices are weaker and
shallower (Fig. 3d) than they were for Fr = 0.22. On
the windward side our analysis indicates that the flow
pattern begins to resemble that found by Drazin (1961;
we postpone a detailed discussion of his solution to
Part II of this paper).

In summary, linear theory well descrlbes the flow
when Fr = 2.2 (as expected) and appears to continue
to capture many of the features of interest for Fr greater
than approximately 0.5 even though it is formally in-
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FIG. 1. Steady-state streamlines at the lower surface for Fr = (a) 2.2, (b) 0.66, (¢) 0.22, and (d) 0.055. Concentric contours in the center
of the domain represent the height of the obstacle with contour interval 0.25 4.

valid in this limit. As Fr \ 0.5 flow stagnation occurs
on the windward and leeward sides and the flow takes
a dramatically different form. Whether or not linear
theory describes this flow transition as a function of Fr
is not clear. What is clear from these experiments is
that the lee vortices and the reversal of the low-level,
upwind-side flow seem to appear together as Fr \ 0.5
and that the process occurs without viscous-boundary-
layer effects. For the remainder of this paper we shall

focus on the lee vortices that appear in this low-Fr flow
regime.

b. Comparison with laboratory experiments

Although the extant relevant laboratory simulations
use obstacles with 2 ~ L, have a no-slip lower surface,
and have reflective upper boundary conditions, some
of the features are so strikingly similar to the present
results that we thought it worthwhile to note them here.

Figure 4 displays a close-up view of the flow on the
center plane and surface in the experiment with Fr
= (.22 (Figs. 1c¢ and 3c). This flow is in qualitative
agreement with that shown in Fig. 15a of the laboratory
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FiG. 2. Displacement field of the isentropic surface with undisturbed height z/h = 7 Fr/4 for (a) Fr = 2.2; contour interval, 10~* A,
(b) Fr = 0.66; contour interval, 5 X 107> h, and (c) Fr = 0.22; contour interval, 1% X 107> 4. In (d) the surface originating at z/
= 97 Fr/8 is displayed for the experiment with Fr = 0.055; contour interval, 8% X 10~ 4. Dashed contour lines indicate negative displacement

and zero contour lines are not shown.

study of Hunt and Snyder (1980, hereinafter HS) as
the distribution of the singular points of the flow (see
also Table 1 of HS) is similar. Progressing in the lower
panel of Fig. 4 from right to left along the flow axis,
we encounter first the saddle point (P, in HS), then
further downstream, but still on the windward slope,
the nodal point (P, in HS). The first singular point on
the leeward side is the saddle point (P; in HS) below
the summit. The centers of the lee vortices represent

two nodes (P, and P;” in HS). Finally, there is a
saddle point downstream of lee vortices on the center
axis of flow (Ps in HS). The upper panel is again similar
to the upper panel of HS’s Fig. 15a in that the reversed
flow in the lee is almost as high as the obstacle and
extends leeward a distance of ~L.

Figure 5 summarizes the Fr dependence of certain
features of the flow associated with the lee vortices.
Figure 5a shows the intensity of the lee vortices as mea-



15 APRIL 1989
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FIG. 3. Steady-state streamlines in vertical cross section through the center plane for Fr = (a) 2.2, (b) 0.66, (¢) 0.22, and (d) 0.055.

sured by the maximum value of the nondimensional
horizontal velocity in the reversed flow in the lee of
the obstacle as a function of Fr. Figure Sb shows the
depth of the lee vortices as measured by the height
(normalized by /) of the reversed flow in the lee of the
obstacle as a function of Fr. Both curves exhibit a sim-
ilar dependence on Fr. These two features remain
aproximately constant within the range Fr ~ 0.2-0.4
and decrease rapidly both when Fr = 0 or Fr — 0.5.
This result is reasonable inasmuch as in the limit
Fr = 0 the solution should approach two-dimensional
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potential flow, while in the limit Fr = oo the solution
should approach three-dimensional potential flow; in
both limits the vortices should disappear. Figure 5c¢
displays the width of the vortex couplet in the spanwise
direction measured by the maximum distance between
closed surface streamlines; the shrinking of the vortices
with increasing Fr is apparent. Finally, Fig. 5d shows
the distance of the vortices from the center of the ob-
stacle measured by the distance of the position of the
maximal reversed flow in the lee from the center of the
obstacle; as Fr increases the lee vortices approach the
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Fi1G. 4. Close-up view of the flow pattern in vertical cross section
on the center plane and the surface for the experiment with Fr
= (.22, for comparison with a similar sketch of the laboratory ex-
periment of Hunt and Snyder (1980, see their Fig. 15a).

obstacle. We include the point at Fr = 0.55 in Fig. 5

even though no well-formed vortex appeared because
it is indicative of the incipient formation of a stagnation
point at the surface. While one could measure the in-
tensity and depth of the reversed flow, the estimation
of the width and distance from the obstacle of the
“vortex” was more subjective.

The results shown in Figs. 5 are in qualitative agree-
ment with the laboratory experiments of HS. Their
Fig. 15a~¢ contains sketches of the flows for Fr = 0.2,
0.4, 1.0, 1.7 and co. Comparing their flow at Fr = 0.2,
with their flow at Fr = 0.4, one observes that the lee
vortices are positioned approximately twice as near to
the obstacle center (cf. Fig. 5d) and are about half the
size (cf. Fig. 5¢). The depth of their vortices decreases
slightly from Fr = 0.2 to 0.4 but, in both cases, not
very far from the nearly constant value obtained in this
range of Fr shown in Fig. 5b. In HS’s Fig. 15¢ (Fr
= 1.0), there is only a very small region of reversed
flow in the lee, and in our simulations, there are no
lee vortices above Fr =~ 0.55. This suggests to us that
the lee vortices found at Fr = 0.2 and 0.4 in HS are
similar to the ones simulated herein as both exist for
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Fr = 0.2 and 0.4, both virtually disappear at Fr = 1.0,
and both exhibit similar characteristics.

The HS Fig. 15d-e shows that the small region of
reversed flow observed at Fr = 1.0 enlarges when Fr
= 1.7 and co. We believe this reappearance of a large
region of reversed flow is a manifestation of a three-
dimensional, separated boundary layer. At the other
extreme, Brighton’s (1978) experiments exhibit lee-
vortex formation for very low Fr(<0.1); it is argued
therein that these vortices are the result of boundary-
layer separation restricted to horizontal planes by the
strong stratification. We believe the present numerical
experiments provide an important complement to the
laboratory studies as those features not exclusively de-
pendent on boundary-layer separation may be isolated.
For Fr outside the range 0.1-0.5, the present study
supports the notion that boundary-layer separation is
responsible for the lee vortices, since without a bound-
ary layer, no lee vortices form in this range. However,
within this range of Fr, the present study suggests there
is a coexisting, likely dominant, mechanism at work.

Before leaving this section, we report that the lee
vortices in our simulations showed no inclination to
shed from the obstacle, even after we perturbed them.
However, Smolarkiewicz et al. (1988) found shedding
vortices in simulations of flow past Hawaii even though
the vortices were produced without a boundary layer
present. We believe that it is the asymmetry of the
mountain shape that induces shedding in those exper-
iments; we have performed simulations of flow past an
elliptical obstacle with minor axis turned at a slight
angle to the mean wind and simulated shedding. Since
vortex shedding is complicated enough to warrant a
separate study and since our preliminary results just
scratch the surface, we think it premature to discuss
these findings in detail herein.

~

4. The lee vortices
a. Simulation of lee vortices

The lee vortices have been explained in terms similar
to those used in describing the formation of vortices
in the wake of a cylinder in a homogeneous flow. That
explanation is that the viscous boundary layer on the -
cylinder suffers an adverse pressure gradient as it passes
toward the rear and so it separates; the resulting flow
carries its vorticity far from the cylinder (Batchelor
1967, pp. 325-331). In explaining the lee vortices in
the case at hand, the stratification is presumed to act
as a constraint that forces fluid to remain in horizontal
planes thus rendering the problem similar to that of
the cylinder (Brighton 1978). This argument cannot
possibly account for the lee vortices in our case, how-
ever, since our free-slip boundary conditions do not
produce a frictional boundary layer and so there is no
frictionally produced vertical vorticity at the obstacle.

One might wonder whether the separation is an ar-
tifact of the finite-difference approximation to the gov-
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FIG. 5. Characteristics of the lee vortices vs Froude number: (a) intensity;
(b) depth; (c) width; (d) distance from the center of the hill.

erning equations and boundary conditions. At the time
the simulation is displayed in Fig. 4 that experiment
was restarted with zero stratification. After an addi-
tional 21 time units (the time required for fluid to ad-
vect through the domain), the three-dimensional po-
tential-flow solution was established and maintained
by the model, as expected from elementary fluid dy-
namics. Therefore, the vortices are not produced by a
spurious source at the surface and are intimately related
to the stratification.

The only possible source of vertical vorticity in the
present experiments is the tilting of horizontal vorticity
in the lee of the obstacle. As the assumed wind up-
stream is constant, there is no ambient horizontal vor-
ticity and so the requisite horizontal vorticity must be
produced by the baroclinicity associated with isentropic
surfaces bending upward and downward as the flow
passes over and round the obstacle. As mentioned in
the previous section, linear theory is formally invalid
at the Fr for which the vortices appear ; however, linear
theory and its higher-order correction have much to
say about the physics of the lee vortices.

b. Linear analysis and its next-order correction

Consider the steady, inviscid hydrostatic! equations
linearized about a constant wind in the x direction ug:

o Bt~ _ 301 )
3, @
wo =, (5)

! We have conducted an experiment at Fr = 0.33 with a hydrostatic
version of Clark’s model and found that the flow features discussed
in this paper are unrelated to nonhydrostatic effects.
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where now N? = db,/dz and the other symbols have

their usual meaning. Along with (2)-(6) we have the
relation
09,
=1y — 7
Wi = to o )
where §, is the perturbation displacement field. Finally,
Egs. (5) and (7) lead to

b, = —~N%,. 8)

The cross derivatives of (2) and (3), together with
the condition at infinity, {; = 0, inform us that the
perturbation vertical vorticity ¢, = 0 for all (x, ).
Hence the vertical vorticity we seek must enter at a
higher order (in the amplitude expansion from which
linear theory emerges at first order). It is easy to show
that at the next order of approximation the vertical
vorticity equation is

9y _p 0wy W
wo gy = b1 g ¥ M g ©)
where £, = —dv,/9z and n, = du, / 3z are respectively

the x and y components of vorticity at first order.
Equation (9) says that vertical vorticity is created at
second order by the tilting of first-order horizontal vor-
ticity by the first-order vertical velocity. Equations for
¢, and 7, can be derived from (2)-(4):
9t _ b, . o _a_bl

u0—=— _—=

x oy’ "0 ax ox

Equations (10a, b) remind us that £, and 75, are gen-
erated through baroclinicity. Using (7), (8) and £,
=, = 0 at x = oo (assuming flow from right to left,
Uy < 0), one can show further that

(10a, b)

_szwaa, N
£ = N dax, .m = ”~ o1. (lla,b)

Within the confines of linear theory, 8, ~ the height
of the topography close to the lower surface. Thus for
a mean flow from right to left, n, < 0 and mirrors the
topography. However £, < 0 for y < 0 and £, > 0 for
y > 0 and trails indefinitely downstream from the ob-
stacle. We display a schematic diagram of the vortex
lines in Fig. 6a. The interpretation is, therefore, that
the baroclinically produced vorticity in the y direction
as the air ascends is exactly cancelled as it descends on
the lee slope. However, vorticity produced in the x di-
rection never encounters any cancelling effect and is
simply swept downstream. [This is consistent with
Smith’s (1980) finding of a permanent lateral deflection
of the surface streamlines downwind of the obstacle.]
Given this fore-aft asymmetry in the £ field it is easy
to see that (9) implies negative (positive) vertical vor-
ticity on the lee slope for y < 0 (y > 0). Above the
lower surface 6, no longer mirrors the topography but
according to Smith’s (1980) solution (his Fig. 5) 8, has
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(@ z=0

FiG. 6. Vortex lines as deduced from linear theory along with an
indication of the sense of the vertical vorticity inferred from the next-
higher-order correction to the linear theory at (a) the lower surface
and (b) 1/8 of a vertical wavelength aloft.

an upwind phase shift of the upward displacement and
downward displacement (§; < 0) in the lee which grad-
ually approaches zero with downstream distance. This
distribution of §, allows one to infer from (11a, b) a
vortex-line system as depicted in Fig. 6b (based on our
inference from Smith’s Fig. 1b). Since 6, and d6,/dy
change sign in the lee of the hill a double-structured
system is implied. '

We can go one step further with (9); substituting
for w, in (9) from (5) we can show that

__ (b
be-mlagtng) 0
Using (8) in (12), we obtain
O, 3
L=bgrtmg) (13)

With (13) and our discussion of §;, n, and é, it is a

" straightforward matter to sketch the sense of {, as we

did in Figs. 6a-b. Equation (12) may be alternatively
derived by considering that the *“potential vorticity” of
the system before linearization w+V b = 0 (where w is
the vorticity vector) upstream and, by Ertel’s theorem
(e.g., see Dutton 1976, p. 381), must be so throughout
the domain. Thus

ab ab
w-Vb=LN+ & o +m 3y +O0(e’)=0 .(14)

where ¢ is an amplitude-measuring parameter.



15 APRIL 1989

¢. Analysis using Ertel’s theorem

The foregoing analysis suggests that we should ex-
ploit Ertel’s theorem in analyzing our fully nonlinear
model results as it is generally applicable. Ertel’s theo-
rem is that for an inviscid adiabatic fluid the “potential
vorticity” is conserved:

d(l
v} =
t(f)w G)) 0,

where p is the height-dependent density of the base
state (e.g., see Rotunno and Klemp 1985), and O is
the potential temperature. In our initial state w-V®
= () for all x, and by (15), it must remain so for all ¢,
ie.,

(15)

w-VO = 0. (16)

The geometrical interpretation of (16) is that vortex
lines must lie in a surface of constant . Moreover, if
the flow is steady, the trajectories, which also remain
on isentropic surfaces, are identical to streamlines, and
then the cumbersome problem of displaying a complex
three-dimensional flow may be reduced to the simpler
two-dimensional analysis of flow on isentropic surfaces.

The accuracy with which the Ertel theorem is sat-
isfied in the model has been evaluated considering the
field of error defined as -

=2 o2 VO
ERI(—)=const - T cos (”w” . Hven) 1. (17)

In all cases discussed in this paper the mean value of
ER was a few percent with standard deviation an order
of magnitude smaller. The extreme values were, how-
ever, large but confined to the regions where the © sur-
faces lowered to the point of intersecting the lower
boundary of the model; consequently their gradients
could not be accurately determined. Apart from this
special situation, ER was generally negligible, indicating
that the source of error was primarily in the evaluation
of ER.

Figure 7 shows the vortex lines on the isentropic
surface originating upstream at z/# = w Fr/2 for the
experiment shown in Fig. 4 (Fr = 0.22). The solid and
dashed lines represent positive and negative displace-
ments, respectively, of the isentrope. The large hole
seen in the center is due to the intersection of the is-
entrope with the hill. It is apparent that the entire sys-
tem of vortex lines is divided into two separate struc-
tures as we had inferred from the linear theory. In the
linear model vorticity vectors are tangent to isentropic
surfaces of the horizontally homogeneous base state (the
linear version of Ertel’s theorem) and so there is no
generation of vertical vorticity. The essential difference
between the linear and nonlinear solution is not so
much in the geometry of isentropic surfaces but rather
in the release of the linear vorticity constraint which
allows for vortex lines to follow the actual isentropes
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FIG. 7. Vortex lines on the isentropic surface of undisturbed height,

z/h = = Fr/2 for the experiment with Fr = 0.22. The contour lines

show the displacement field of the isentrope (contour lines are plotted
for the values, 84, 6%, 5, 3', =3, —6%, —10, —13%3 X 107° h).

.(instead of the those of the base state). It is apparent

from Fig. 7 that the strongest tilting of vortex lines
toward the vertical occurs in the lee of the hill where
vortex lines cross lines of constant displacement at the
steep slopes of the © surface. At the upwind-side vortex
lines remain parallel to the lines of constant displace-
ment and this indicates zero vertical vorticity.

5. Discussion

The flow of a uniformly stratified fluid past a three-
dimensional obstacle becomes highly complex as the
Froude number passes below unity. In this regime lin-
ear theory fails (since it requires a large Froude number
for its validity), as does potential-flow-type theories
(which require an extremely small Froude number for
their validity). The present numerical experiments
were conceived as a means to bridge the gap between
these two approaches. Our calculations were carried
out using a free-slip condition between the fluid and
the lower bounding surface in order to isolate the purely
inviscid aspects of the stratified fluid flow from those
due to the viscous boundary layer. We found that as
the Froude number passed below a critical value
(~0.5) vertically oriented vortices on the lee side, and
a zone of flow reversal on the windward side, appear.

The mechanism for generation of the vertically ori-
ented vorticity of the lee vortices is through the tilting
of the horizontally oriented vorticity, but since there
is no such horizontally oriented vorticity in the base
state, it must be generated through baroclinic produc-
tion as the isentropes bend upward, and subsequently
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downward, as the flow passes over the obstacle. The
shape of the isentropic surfaces is thus crucial for un-
derstanding the vorticity distribution. Linear gravity-
wave theory gives a good qualitative description of the
shape of the isentropes but predicts zero vertical vor-
. ticity. By carrying out the amplitude expansion, from
which linear theory emerges at first order, to the next
order, we find that the vertical vorticity is given by the
tilting of the first-order baroclinically produced hori-
zontal vorticity by the first-order vertical velocity. We
show that these deductions may be made from Ertel’s
theorem and proceed to analyze the fully nonlinear

model results in the framework supplied by the con-

servation of potential vorticity.

Although the linear theory gives a good qualitative
description of the form of the solution, it seems far less
useful when it comes to understanding the transition
we observe as Fr \v 0.5, Certainly the most important
thing that happens at Fr N\ 0.5 is the appearance of
inchoate stagnation points. Although it is technically
invalid, Smith (1980) shows that the linear solution
implies flow stagnation at the lower surface on the
windward side at Fr ~ 0.4. The relevance of this pre-
diction will be evaluated in Part II of this study as we
then concentrate on the windward-side flow. However,
on the leeward side the linear solution (which is invalid
. since the isentropes collapse and intersect the lower
surface there when Fr =~ 2) gives no suggestion of de-
celerated flow. This and our deduction that a vortex
pair, with implied reversed flow on the center axis,
emerges in the next-order correction to linear theory
leads us to the conclusion that the prediction of the
leeward stagnation point is beyond the reach of linear
theory. Although the second-order theory suggests re-
versed flow on the lee side, an analytical prediction of
the appearance of flow stagnation on the leeward side
as Fr N 0.5 has thus far eluded us.

Our comparison of the present results with labora-
tory experiments suggests there is more than one
mechanism producing lee vortices. For Fr > 0.5 and
- Fr very small, the contention that lee vortices are pro-
duced by boundary-layer separation is supported by
the present calculations as we deliberately eliminate a
boundary layer and no vortices occur in this range of
Fr. However, within the range 0.1 < Fr < 0.5 (which
covers most circumstances of flow past mesoscale
mountains), the present study indicates that the purely
inviscid mechanism described herein may coexist with,
and likely dominate, that of boundary-layer separation.

Several observational tests of the present mechanism
immediately suggest themselves. First, and most ob-
viously, the lee vortices should have deep warm cores.

Casual observation of cloud photographs show the ab- .

sence of clouds directly in the lee of Hawaii; it would
"be fairly simple to investigate whether the absence of
clouds there is a manifestation of a pair of warm-core
vortices. Second, the horizontally averaged absolute
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magnitude of vertical vorticity ought to decrease grad-
ually (~z7") over the depth of the fluid for the baro-
clinic vortices, while, in contrast, the same quantity
associated with frictionally produced vortices ought to
decrease abruptly above the summit. We also believe
that field verification of the properties of the simulated
lee vortices indicated in Fig. 5 should be relatively
straightforward.
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