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Abstract10

The development of a unified similarity scaling has so far failed over complex surfaces,11

as scaling studies show large deviations from the empirical formulations developed over12

flat and horizontally homogeneous terrain and also large deviations between the differ-13

ent complex terrain datasets. However, a recent study of turbulence anisotropy for flat14

and horizontally homogeneous terrain has shown that separating the data according to15

the limiting states of anisotropy (isotropic, two-component axisymmetric and one com-16

ponent turbulence) improves near-surface scaling. In this paper we explore whether this17

finding can be extended to turbulence over inclined and horizontally heterogeneous sur-18

faces by examining near-surface scaling for twelve different datasets obtained over ter-19

rain ranging from flat to mountainous. Although these datasets show large deviations20

in scaling when all anisotropy types are examined together, the separation according to21

the limiting states of anisotropy significantly improves the collapse of data onto common22

scaling relations indicating the possibility of a unified framework for turbulence scaling.23

The causes for the breakdown of scaling and the physical mechanisms behind the tur-24

bulence complexity encountered over complex terrain are identified and shown to be re-25

lated to the distance to the isotropic state, prevalence of directional shear with height26

in mountainous terrain and the existence of non-isotropy in the inertial subrange. A mea-27

sure of turbulence complexity is finally developed.28

1 Introduction29

Atmospheric surface-layer (ASL) similarity theory was developed as a unified the-30

ory of statistically stationary turbulence over horizontally homogeneous and flat terrain31

[HHF; e.g. Monin and Yaglom, 1971]. Although never meant to be employed over het-32

erogeneous and non-flat surfaces, the lack of a better framework has thus far led to sim-33

ilarity theory being employed in weather prediction and climate models over all types34

of terrain [cf. Rotach et al., 2017]. Given the prevalence of heterogeneity of the earth land35

surface [e.g. Rotach et al., 2014], adaptations were developed by reconciling theory and36

application under the principle of ‘local ’ homogeneity in order to be able to model real37

flows over heterogeneous surfaces. Meaning, that over small enough regions, sampled long38

enough, what a-priori might resemble a heterogeneous surface, can ultimately be inter-39

preted as homogeneous. While these practical adjustments work well for regions with40

weak heterogeneities [e.g. Sfyri et al., 2018], similarity relationships become severely chal-41

lenged in complex terrain [e.g. Martins et al., 2009; Nadeau et al., 2013; Sfyri et al., 2018]42

where terrain slope, land-use characteristics and complexity of the flow itself (e.g. low-43

level jets, flow separation etc.) cause turbulence to exhibit increasing complex structure44

[e.g. Nadeau et al., 2013; Oldroyd et al., 2016; Stiperski and Rotach, 2016; Grachev et al.,45

2016]). In this work, reference to complex terrain is understood as topographic pertur-46

bations that induce spatial and/or temporal perturbations to the atmospheric flow with47

a timescale shorter than that of the diurnal cycle or mesoscale phenomena (e.g., sloped48

terrain, ground roughness and thermal patchiness, obstacles, etc.)49

Numerous studies have illustrated the adequacy of similarity theory under ideal-50

ized terrain and flow conditions [e.g. Panofsky and Dutton, 1984; Wyngaard , 2010]. Nonethe-51

less, an important degree of scatter still exists, particularly for horizontal velocity vari-52

ances that are commonly assumed not to obey surface layer scaling [e.g. Kaimal and Finni-53

gan, 1994; Wyngaard , 2010; Banerjee et al., 2015; Chamecki et al., 2017]. This scatter54

also persists despite the advanced post-processing techniques and progressively more re-55

strictive quality criteria imposed on the data. In an effort to overcome these challenges,56

Stiperski and Calaf [2018] employed a novel approach by examining traditional similar-57

ity scaling relations over flat and horizontally homogeneous terrain based on clustering58

the data according to anisotropy. Results of this work illustrated a strong dependence59

between the quality of the scaling fit and the characteristic topology of the turbulent flow,60

showing that the similarity scaling significantly improves when the turbulent flow is a-61
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priory classified according to the anisotropy type. In essence, results illustrated that isotropic62

and two-component axisymmetric type turbulence scales the best (i.e., show closest col-63

lapse on a scaling line), although for horizontal velocity components, the two types of64

anisotropy were shown to follow different scaling curves. This finding could explain the65

commonly encountered large scatter observed for scaled standard deviations of horizon-66

tal velocities. On the other hand, one-component turbulence strongly departs from reg-67

ular scaling curves. These results together with the possibility of predicting the anisotropy68

type based on larger scale variables as shown in Stiperski and Calaf [2018], promised to69

be a powerful tool in improving similarity scaling relations.70

In complex terrain, on the other hand, despite the progressively more severe restric-71

tions imposed on the experimental data [cf. Stiperski and Rotach, 2016], significant scat-72

ter and a relevant degree of discrepancy between the experimental data and similarity73

relationships are more evident. Even more, all the studies examining the applicability74

of surface-layer scaling for data obtained over diverse complex settings [e.g., Park and75

Park , 2006; de Franceschi et al., 2009; Martins et al., 2009; Nadeau et al., 2013; Kral et al.,76

2014; Babić et al., 2016a,b; Grachev et al., 2016; Sfyri et al., 2018] show that the scal-77

ing relations not only differ from the functional relations obtained over flat and horizon-78

tally homogeneous terrain, but also differ from site to site, suggesting that scaling might79

be inherently ‘local ’ (i.e., location dependent) and therefore no unified theory of turbu-80

lence over all types of surfaces is possible. The search for an additional scaling variable81

in complex terrain that could explain these discrepancies has so far been proven unsuc-82

cessful, as the only systematic study to date [Sfyri et al., 2018] found no clear relation-83

ship between scaling and slope angle, at least for the scaled standard deviations of scalars.84

Still, the data from progressively more complex surfaces do show larger deviations from85

the scaling curve and generally larger scatter, even if the exact mechanism behind this86

finding escapes clear explanation.87

In this work, and based on the earlier approach first introduced in Stiperski and88

Calaf [2018], we present a new interpretation of the a-priori mismatch of near-surface89

data in complex terrain and traditional scaling relations based on the anisotropy of the90

turbulence stress tensor. The results show that similar to flat and horizontally homo-91

geneous terrain, separating the complex terrain data according to anisotropy significantly92

improves scaling, offering a pathway towards a unified theory of turbulence. In addition,93

we provide a novel approach that defines complexity as not only exclusively associated94

with terrain characteristics, but also to the actual resultant turbulence structure. The95

physical mechanisms causing this complexity are then identified. This new definition of96

complexity could facilitate comparison between different datasets collected in regions with97

different atmospheric and topographic characteristics.98

The paper is organized as follows: in Section 2 the datasets and post-processing99

methods are presented, the anisotropy analysis is reviewed, and scaling relations intro-100

duced; Section 3 presents the relationship between similarity scaling and the anisotropy101

of turbulence over complex terrain; Section 4 identifies a measure of turbulence complex-102

ity and examines its relation to the physical mechanisms acting in complex terrain; an103

extended discussion of the results and implications for similarity theory as well as con-104

clusions are provided in Section 5.105

2 Methodology106

2.1 Datasets107

In this study we examine turbulence measurements from twelve flux towers located108

on surfaces of different complexity, ranging from flat to highly complex mountainous ter-109

rain. These are part of well known datasets and include the tower at Cabauw experimen-110

tal site for atmospheric research (Cesar) of the Royal Netherlands Meteorological Insti-111
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tute [e.g., Beljaars and Bosveld , 1997], the Cooperative Atmosphere − Surface Exchange112

Study 1999 [CASES-99; Poulos et al., 2002], the Terrain-induced Rotor Experiment [T-113

Rex; Grubǐsič et al., 2008], the Mountain Terrain Atmospheric Modeling and Observa-114

tions [MATERHORN; Fernando et al., 2015], the Second Meteor Crater Experiment [METCRAX115

II; Lehner et al., 2016], and the Innsbruck Box [i-Box; Rotach et al., 2017]. A detailed116

description of the datasets is given in Table 1. The dataset that conforms to the flat and117

horizontally homogeneous terrain the best is CASES-99. Already studied in Stiperski and118

Calaf [2018] it forms the basis of the current analysis. The data consist of a month of119

measurements from a 60 m tower with 7 levels of sonic anemometers. Due to issues with120

the anisotropy of the CSAT3 measurements during stable periods identified in Stiper-121

ski and Calaf [2018], here we only study the levels with ATI-K probes in stable condi-122

tions. Cabauw data can also be considered flat, however, horizontally weakly inhomo-123

geneous [Sfyri et al., 2018]. The other datasets were chosen according to their increas-124

ing terrain complexity. The Central tower from T-Rex is located at an almost flat val-125

ley floor, however, its setting within a mountain valley (i.e., complex terrain) neverthe-126

less has a profound influence on scaling [cf. Babić et al., 2016b]. The i-Box0 valley floor127

site (see Table 1), apart from being located in a narrower valley than T-Rex, is addition-128

ally characterized by larger surface heterogeneity, given that it is surrounded by mixed129

agricultural land. The rest of the datasets are located on slopes of various steepness and130

are strongly influenced by flows associated with sloped terrain (e.g., thermally-driven131

katabatic and anabatic flows and dynamically-driven wind systems) and/or heterogene-132

ity. The i-Box1 station has a small slope angle, however, the influence of surface hetero-133

geneity (corn and meadows) for this station is larger than the influence of sloping ter-134

rain because the dominant wind direction is across the slope. The same is true for T-135

Rex West tower, although there the wind rose also shows a large influence of katabatic136

flows as well as downslope windstorms [Babić et al., 2016b]. On the other hand, deep137

katabatic flows with jet maxima between 20 and 40 m above ground level (agl) develop138

regularly at the METCRAX II NEAR tower [cf. Savage et al., 2008; Lehner et al., 2016].139

Persistent shallow katabatic flows with a jet maximum at around 5 m agl are also found140

at MATERHORN ES4 and ES5 towers located at the top of a relatively shallow slope141

below a couloir [Grachev et al., 2016]. Even shallower katabatic flows develop at the steeper142

i-Box10 and i-Box27 stations. The i-Box mountain top station (i-BoxTop) represents the143

most complex site due to its location on a ridge exposed to flow from all sides that, de-144

pending on wind direction, responds to very different slope angles. Operating continu-145

ous turbulence measurements at this station is challenging therefore only seven months146

of measurements were analyzed in this study, as opposed to the other i-Box stations where147

one year of data was analyzed. The datasets (in both Table 1 and future Figures) are148

a-priory subjectively ordered according to their slope angle, with colder colors represent-149

ing gentler slopes (flat terrain being considered more ideal than the flat valley floor lo-150

cations) and warmer colors progressively steeper slope angles (4 - 27◦).151

2.2 Data treatment and quality control158

To remove the inconsistencies in data processing applied by different groups respon-159

sible for each of the datasets, we reanalyzed all the data with a processing routine de-160

scribed in Stiperski and Calaf [2018]. First, the Multi-resolution flux decomposition [MRD,161

e.g., Vickers and Mahrt , 2003] technique was used to determine the optimal averaging162

time for daytime and nighttime turbulence (Figure 1). As in Stiperski and Calaf [2018]163

we separate the data into strongly and weakly stable/unstable regimes to examine how164

the averaging time depends on the stability. The results show that for the examined datasets165

a 1 min averaging time for stable stratification and 30 min averaging time for unstable166

stratification generally capture the majority of turbulence contributions to the flux while167

eliminating most of the (sub)mesoscale effects. The obvious exception here is the i-Box27168

steep slope station (orange line in Figure 1). At that station very stable conditions are169

rarely encountered, therefore 1 min average slightly underestimates the nighttime fluxes.170
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Figure 1. Multi-resolution flux decomposition of heat flux for example nights with (a) strongly sta-

ble, (b) weakly stable, (c) strongly unstable and (d) weakly unstable stratification, respectively, for the

lowest measurement level of different datasets (shown in color, see Table 1 for abbreviations). The colored

lines represent medians and are normalized by their maximum value within the turbulence scales for each

dataset so as to eliminate differences in magnitude. Error bars represent the 25 and 75 percentile. Vertical

dashed lines indicate timescales of 1 min, 5 min and 30 min, respectively.

152

153

154

155

156

157

The data were then de-trended and block averaged to the given averaging time. Dou-171

ble rotation was used to align the coordinates into the streamwise coordinate system.172

Zero-plane displacement information was applied to the stations where this information173

was available. For i-Box measurements, the zero-plane displacement was calculated based174

on the measurements of surrounding vegetation height [Sfyri et al., 2018]. For the two175

T-Rex towers the values from the study of Babić et al. [2016b] were used. For the other176

datasets the zero-plane displacement was assumed to be zero given the generally low veg-177

etation height.178

Vertical wind shear and temperature gradients needed for calculating the gradient179

Richardson number Ri were determined for datasets with multiple measurement levels180

(i.e., CASES-99, T-Rex, METCRAX II, MATERHORN and i-Box0). In order to deter-181

mine the local wind speed gradient at each measurement height analytic profiles were182

fit through the entire tower length. Different analytic formulations were needed for each183

dataset due to profiles having different characteristics, particularly in case of the exis-184

tence of low-level jets. The formulations used were x = a + b z + c z2 + d log(z) for185

CASES-99, x = a+b z+c z2 +d log(z)+e log(z)2 for T-Rex, x = a+b z+c z2 +d z3 +186

e log(z) + f log(z)2 for METCRAX II, x = a+ b log(z) + c log(z)2 for MATERHORN,187

and finally x = a+ b log(z) + c log(z)2 + d log(z)3 for i-Box0. As a quality check, only188

those wind speed gradients in which the root mean square error of the best fit was lower189

than 0.3 ms−1 were taken into account.190

All turbulence data were required to pass the basic quality control (test of phys-191

ical limits) as well as to satisfy the stationarity test given by Foken and Wichura [1996]192

at its standard 30% level. As in Stiperski and Calaf [2018], the stationarity criterion was193

dropped for small fluxes i.e., for very unstable conditions stationarity of the momentum194

flux was not required, while for near-neutral conditions the same was true for the sta-195
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tionarity of the heat flux. For datasets with multiple levels, the requirement that the gra-196

dient Richardson number be smaller than 0.25 was also imposed [cf. Grachev et al., 2013].197

As shown in Stiperski and Calaf [2018], existence of unstably stratified turbulence dur-198

ing nighttime points to non-local sources of turbulence and cannot be expected to fol-199

low scaling. In order to filter these counter gradient fluxes, theoretical incoming short-200

wave radiation was used to determine sunrise and sunset times together with the con-201

servative cross-over time of the daily cycle of sensible heat flux. This was particularly202

important for i-Box stations where a year of data was analyzed meaning that sunset and203

sunrise times varied significantly. No flux corrections were applied to the data, the same204

as in Stiperski and Calaf [2018].205

2.3 Anisotropy206

Traditionally, the Reynolds stresses (u′iu
′
j) can be decomposed into an isotropic and207

anisotropic contribution, the latter being the one contributing the most to the transport208

of momentum [Pope, 2000]. The anisotropy contribution to scalar fluxes is also assumed209

to be important. The sum of the isotropic components of the Reynolds stress tensor is210

traditionally referred to as twice the turbulent kinetic energy (2e = u′iu
′
i). In the above211

notation, a prime indicates a departure of a time-averaged quantity, and the overbar in-212

dicates the time-averaging operation. Additionally, the indices i, j vary between 1 to 3,213

in reference to the traditional Cartesian coordinate reference system with 1 indicating214

the streamwise, 2 the spanwise, and 3 the surface-normal directions, respectively.215

The deviatoric anisotropy stress tensor defined as,216

aij ≡ uiuj −
2

3
eδij , (1)

and in non-dimensional form (normalized by 2e) as,217

bij =
uiuj
ulul

− 1

3
δij , (2)

has long been studied in relationship to, for example, the pressure-strain correlation to218

develop models that capture the return-to-isotropy process once mean velocity gradients219

stop acting on the flow [Rotta, 1951; Lumley and Newman, 1977; Lumley , 1978; Sarkar220

and Speziale, 1990; Choi and Lumley , 2001]. Based on Lumley’s work [Lumley and New-221

man, 1977; Lumley , 1978], it is possible to reduce the original three dimensional prob-222

lem characterized by six independent terms (normalized deviatoric anisotropy stress ten-223

sor) into a simpler problem with two degrees of freedom, based on the so-called anisotropy224

invariants, η and ξ [Pope, 2000] that are also functions of the eigenvalues (λi, i = 1, 2, 3)225

of the anisotropy stress tensor. The first invariant (η) is positive definite and provides226

a measure of the degree of anisotropy in the flow field (large values indicating intense227

anisotropy, and small values indicating near-isotropic behavior). The second invariant228

(ξ) can be positive or negative, indicating that the flow is dominated by one-component229

turbulence when positive, and by two-component turbulence when negative. These in-230

variants can be mathematically determined from the normalized deviatoric anisotropy231

stress tensor as [Pope, 2000]232

6η2 = bijbji and 6ξ3 = bijbjkbki. (3)

As a result, it is possible to represent any realizable state of turbulence on a sin-236

gle two-dimensional non-linear map, the so-called Lumley Triangle (LT, Lumley [1978];237

Pope [2000]). Here, instead, we use a modification of the original LT, the Barycentric238

Lumley Triangle (BLT, Banerjee et al. [2007], see Figure 2 and Table 2), that overcomes239

the complexity associated with the non-linearity of the LT by equally weighing the dif-240

ferent limiting states of turbulence anisotropy. The corresponding coordinates (xB , yB)241
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Table 2. Summary of the special states of the Reynolds-stress tensor in terms of the invariants (η,

ξ), and the eigenvalues of the anisotropy stress tensor as described by the Lumley Triangle. The fourth

column introduces the corresponding ellipsoid shape described by the eigenvectors [Pope, 2000].

233

234

235

Cases Invariants Eigenvalues Shape ellipsoid

Isotropic η = ξ = 0 λ1 = λ2 = λ3 = 0 Sphere

Two-component
axisymmetric

η = 1
6 , ξ = − 1

6 λ1 = λ2 = 1
6 Disk

One-component η = ξ = 1
3 λ1 = 2

3 , λ2 = λ3 = − 1
3 Line

Axisymmetric,
one large eigen-
value

η = ξ − 1
3 ≤ λ1 = λ2 ≤ 0 Prolate Spheroid

Axisymmetric,
one small eigen-
value

η = −ξ 0 ≤ λ1 = λ2 ≤ 1
6 Oblate Spheroid

Two-component η = ( 1
27 + 2ξ3)1/2 λ1 + λ2 = 1

3 Ellipse

of this linearized 2D map are related to the eigenvalues as242

xB = C1cx1c + C2cx2c + C3cx3c = C1c + C3c
1
2 , (4)

yB = C1cy1c + C2cy2c + C3cy3c = C3c

√
3

2 , (5)

with the corresponding weights (Cic) written as C1c = λ1−λ2, C2c = 2(λ2−λ3), and243

C3c = 3λ3 + 1, with x1C = (1, 0), x2C = (0, 0), and x3C = (1/2,
√

3/2) indicating the244

limiting states of turbulence anisotropy in the BLT. Both invariant maps are equivalent245

given the existing relationship between the anisotropy invariants (η and ξ) and the eigen-246

values of the normalized anisotropy tensor (λi, Spencer [1971]),247

η2 = 1
3 (λ2

1 + λ1λ2 + λ2
2) (6)

ξ3 = − 1
2λ1λ2(λ1 + λ2). (7)

Finally, it is important to reiterate that the shape associated with the limiting states248

of anisotropy refers to the representation in eigenvalue space and not to the physical shape249

of turbulence itself [Simonsen and Krogstad , 2005]. More detail on the analysis of tur-250

bulence anisotropy can be found in [Stiperski and Calaf , 2018]251

2.4 Scaling255

Following Stiperski and Calaf [2018] we examine the influence of turbulence anisotropy256

on near-surface similarity within the local scaling framework [cf. Nieuwstadt , 1984a,b].257

Turbulent quantities are therefore scaled with the fluxes obtained at the corresponding258

measurement height z. The local Obukhov length Λ is defined as Λ =
−u3
∗θv

κgw′θ′
, where259

θv is the mean virtual potential temperature, κ the von Karman constant, equal to 0.4,260

u∗ the local friction velocity computed as u∗ = (u′w′
2

+ v′w′
2
)

1
4 and w′θ′ is the local261

heat flux. The quantity (z − d)/Λ, where d is the displacement height, represents the262

local stability. We also define the local temperature scale as θ∗ = −w′θ′u∗
. The follow-263

ing functional forms of the surface-layer flux-variance similarity relationships are used264

for reference: for the standard deviations of velocity components (Φu,Φv,Φw), following265

Panofsky and Dutton [1984],266

Φw =
σw
u∗

=

{
1.25(1 + 3 zΛ )

1
3 for z

Λ > 0

1.25(1− 3 zΛ )
1
3 for z

Λ < 0
(8)
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Figure 2. Barycentric Lumley Triangle as a function of the anisotropy stress tensor eigenval-

ues and represented through the linearized coordinates xB and yB . The shading indicates regions

of the triangle that were selected as pure limiting states of anisotropy.

252

253

254

Φu,v =
σu,v
u∗

=

{
2.55(1 + 3 zΛ )

1
3 for z

Λ > 0

2.55(1− 3 zΛ )
1
3 for z

Λ < 0
(9)

for temperature standard deviation (Φθ), taking the reference curve from Sfyri et al. [2018],267

Φθ =
σθ
θ∗

=


2 + 6.7 · 10−4 z

Λ
−1.42 for z

Λ > 0

1.67− 0.016( zΛ )1 for − 0.05 < z
Λ < 0

1.95(0.05− z
Λ )

1
3 for z

Λ < −0.05

(10)

and for turbulence dissipation rate (Φε), following Thiermann [1990],268

Φε =
kzε

u3
∗

=

{
(1 + 4 zΛ + 16( zΛ )2)

1
2 for z

Λ > 0

(1− 3 zΛ )−1 − z
Λ for z

Λ < 0
(11)

In the stable z-less limit Sorbjan [1987] suggested the following constant values of the269

flux-variance relationships270

Φw = 1.6, Φu,v = 3.1. (12)

A number of quantitative measures are used to determine the amount of scatter271

between the datasets and the agreement with the reference scaling curves. Absolute de-272

viations ∆Φy = |y − Φy|, where y = u, v, w, θ, ε, are calculated as the absolute dis-273

tance between the scaled data y and the corresponding reference scaling curves (Eq. 8274

– 11). For stable conditions the z-less limit (Eq. 12) is used for the velocity components.275

For data separated according to anisotropy, the distance to the closest scaling line is em-276

ployed. This implies that for standard deviations of horizontal velocity components un-277

der isotropic conditions, the reference curve used in the calculation is Φw, and not Φu,v278

[cf. Stiperski and Calaf , 2018]. The median of the absolute deviations (MAD) is used279
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to quantify the mean disagreement of each dataset with the respective scaling as well as280

to quantify the complexity of the dataset. While the absolute value of MAD already pro-281

vides an indicator of the goodness of scaling, it is sensitive to the choice of the scaling282

curve and therefore might lead to large values if the choice is inadequate. Therefore, as283

a best indicator of the improvement in scaling, i.e. decreased variability in MAD between284

the different datasets, we use the inter-quartile range (IQR). It is calculated from the285

twelve MADs for each scaling variable and stability as the difference between the 75 and286

25 percentile. This measure provides information on the discrepancies between the dif-287

ferent datasets and the scaling curves and in that sense quantifies how ‘location depen-288

dent ’ the scaling for different datasets is, and how much improvement is brought about289

by the new approach of Stiperski and Calaf [2018].290

3 Results298

The scaled standard deviations of high-quality stationary data for each of the twelve299

datasets are shown in Figure 3 in comparison with the traditional similarity relations from300

horizontally homogeneous and flat terrain (Eq. 8 – 12). For visualization purposes the301

data from each dataset are binned and the median of each bin is displayed. The spread302

of the data is shown as the shading and corresponds to the inter-quartile range of each303

bin. The absolute deviations between the data and the reference scaling curves as well304

as inter-dataset spread are shown in Figure 4.305

The results show large scatter both within each individual dataset (large shaded306

area in Figure 3) as well as between the different datasets (large IQR values in Figure307

4), confirming the ’location-dependent ’ nature of scaling in complex terrain. The large308

scatter within each dataset is particularly clear for horizontal velocity components Φu,v309

in the very unstable region (cf. Figure 3a & b), to the point that the similarity relations310

can be deemed meaningless in that case. The same is true for the near-neutral regions311

for scaled temperature Φθ and less so for the scaled TKE dissipation rate Φε. Notably,312

the vertical velocity variance exhibits good scaling behavior throughout, regardless of313

the dataset. This is particularly interesting given the large disparity of datasets used in314

this work, representative of very different terrain and flow complexities as well as ver-315

tical coordinates, which over flat terrain represent the vertical and in complex terrain316

the slope-normal direction. In the stable regime in general, the data scatter suggests a317

better collapse to a scaling curve (smaller IQR values in Figure 4 than for unstable data),318

particularly for weakly stable conditions of the velocity components Φu,v,w. It is inter-319

esting to note, however, that the scaled standard deviation of streamwise velocity Φu seems320

to suggest an ordering according to the datasets in the near-neutral regime, with some321

datasets showing a higher neutral limit than others, but all exhibiting a value lower than322

the HHF relation. The deviations from the reference scaling curves Eq. 8 – 9 in the very323

stable regime are quite substantial, indicative of, though not confirming, z-less scaling.324

This general behavior is slightly different for Φθ, where large scatter, mirroring that of325

the very unstable region of horizontal velocities, is present under weak stability, while326

data seem to scale better in the strongly stable regime.327

In a first approximation, one may expect the results in Figure 4 to show an increas-332

ing deviation from the traditional scaling relations with increasing ‘complexity’ of the333

underlying terrain where the data were measured (see the subjective ordering of the datasets334

in Table 1 and the associated colors). Therefore, it could be expected that the smallest335

discrepancies are found for the most ideal sites such as CASES-99 (CA), Cabauw (CB),336

T-RexC and i-Box0 stations, and the biggest for data measured in stations located in337

very inclined terrain, such is i-Box10 and i-Box27 or i-BoxTop. Figure 4, however, shows338

that this is not the case and there is little to no correlation between the deviation from339

traditional scaling and the a-priori ordering of the datasets that was based solely on the340

slope angle-induced complexity. In fact, it can be observed that the discrepancies in scal-341

ing are generally the largest for CASES-99 and METCRAX II (Figure 4 a–c), despite342
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Figure 3. Scaling relations of the standard deviation of a) streamwise velocity (Φu), b) spanwise ve-

locity (Φv), c) surface-normal velocity (Φw), d) temperature (Φθ) and d) TKE dissipation rate (Φε) as a

function of the local stability z/Λ for unstable (left) and stable (right) stratification. Colors represent dif-

ferent datasets described in Table 1. Points represent medians calculated over the bins of logarithmically-

spaced z/Λ, while the shading corresponds to the inter-quartile range. The full black lines correspond to

the traditional scaling relations (Eq. 8 – 11) and dashed lines to the z-less scaling for each variable (Eq.

12).

291

292

293

294

295

296

297
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Figure 4. Box plots of absolute deviations a) – e) ∆Φy where y = u, v, w, θ and ε, respectively, of the

scaled data from the corresponding scaling relations (Eq. 8 – 12): as a function of the dataset (color), for

unstable (left column) and stable (right column) stratification. Note the different vertical axes for each

variable. The value of the inter-quartile range (IQR) is listed in each panel.

328

329

330

331
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these being some of the most a-priori ideal locations (see Table 1). This mismatch with343

ordering of the datasets is present in all scaling variables, and particularly in unstable344

but also in stable stratification, suggesting that our simple classification of datasets based345

on slope angle is not corresponding to the true nature of their complexity.346

Following the approach developed in Stiperski and Calaf [2018], next we separate347

the data according to the three limiting states of anisotropy: isotropic, two-component348

axisymmetric and one-component turbulence, before revisiting the scaling relations (Fig-349

ure 5). Figure 6 shows the MAD and IQR as objective measures of the improvement of350

the scaling. Mirroring the results for flat terrain (CASES-99 in Stiperski and Calaf [2018]),351

accounting for turbulence topology drastically improves scaling (i.e., decreases MAD and352

IQR) for all datasets regardless of the complexity induced by terrain and local weather353

conditions. For all variables, the most consistent reduction in IQR and overall the best354

scaling behavior is apparent for isotropic turbulence both under unstable and stable strat-355

ification, and for unstable two-component axisymmetric turbulence (Figure 6). Compared356

to Figure 4, the largest improvement is obtained for the horizontal velocity components357

under unstable stratification with MAD and IQR reduced by up to 60%. As already found358

for CASES-99 by Stiperski and Calaf [2018], isotropic and two-component axisymmet-359

ric turbulence for horizontal velocity variances follow two distinctly different scaling lines.360

We come to the same conclusion as Stiperski and Calaf [2018] that this clustering of the361

data to two different scaling curves is the leading cause of the large scatter illustrated362

in Figure 3 a&b and Figure 4 a&b in the very unstable region. It is interesting to note363

that for all datasets, irrespective of complexity, isotropic turbulence occupies the same364

region of z/Λ as for flat terrain (i.e. z/Λ < −1). This is a clear sign of TKE produc-365

tion in isotropic turbulence being thermally dominated [Stiperski and Calaf , 2018] ir-366

respective of terrain complexity. On the other hand, in complex terrain, two-component367

axisymmetric turbulence is found also in very unstable conditions, contrary to the re-368

sults over flat terrain (CASES-99 in Stiperski and Calaf [2018]). The small amount of369

data points corresponding to unstable one-component turbulence does not allow us to370

reach definite conclusions about similarity of this type of turbulence. The results do seem371

to suggest a larger degree of scatter and therefore a lack of proper scaling.372

In the stable regime, the scaled standard deviations of all velocity components fol-373

low the z-less scaling up to z/Λ ≈ 1 whereupon the data start to deviate from their con-374

stant value. This is opposite to the general expectations for z-less scaling and might be375

an indication of self-correlation [Klipp and Mahrt , 2004]. The least scatter between the376

datasets (smallest IQR) is observed for isotropic turbulence. This is true even for the377

standard deviation of temperature, but only over a very limited range of stability. The378

near-neutrally stable region of Φθ shows large scatter, which is likely another indication379

of self-correlation as found by Sfyri et al. [2018]. In addition, the negative slope of the380

Φθ scaling only appears at larger stability for both isotropic and one-component turbu-381

lence than suggested by the HHF curve. This shifted linear decrease in the relation be-382

tween temperature variability and heat flux explains the large ∆Φθ (Figure 4d), i.e., the383

deviation of the datasets from the scaling relations. The two-component axisymmtric384

and one component turbulence show progressively more scatter (larger IQR) compared385

to isotropic turbulence but also a reduction of the value of the scaled standard devia-386

tions of velocity components (Φu,v,w) and TKE dissipation rate (Φε), and an increase387

in the scaled standard deviation of temperature (Φθ). This suggests that, at least for sta-388

ble stratification, i.e. when mechanically produced turbulence is being damped by neg-389

ative buoyancy, anisotropic turbulence tends to have a larger temperature variance but390

smaller velocity variances in relation to the respective fluxes. One component turbulence391

is again the turbulence topology that exhibits most scatter, particularly for Φu and Φε.392

It is particularly interesting to note that the station with the most complex conditions393

(iBoxTop) shows largest deviations from scaling for unstable stratification, but on the394

other hand does not exhibit systematic deviations for stable stratification but rather falls395

within those of the other datasets.396
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These results confirm our initial hypothesis that anisotropy is the key variable miss-397

ing from scaling relations. Indeed, anisotropy seems to provide a direction towards a uni-398

fying framework for turbulence in conditions where the assumptions of Monin-Obukhov399

Similarity Theory are generally violated, such as complex terrain or other sources of com-400

plex weather patterns that might affect the local flow.401

Because separating the data according to anisotropy does significantly improve scal-402

ing, we first attempt to explain the large scatter between and within the original datasets403

observed in Figures 3 and 4 by focusing on the frequency of occurrence of a given pure404

state of anisotropy. This is done to examine whether local topographic dissimilarities be-405

tween the locations where the datasets were taken, cause different types of turbulence406

topologies to occur more or less frequently and thus converge towards different scaling407

curves leading to large scatter if examined together. Figure 7 shows the number of av-408

eraging periods for each pure turbulence state n (separated according to anisotropy and409

stratification) divided by the total number of averaging periods that are unstable or sta-410

ble ntot. One can first note that turbulence states classified within the ‘purely ’ isotropic,411

two- and one-component regimes (cf. Figure 2) only represent a small fraction of the over-412

all turbulence states. On average, the pure states of anisotropy jointly occur less than413

40% of the time for unstable stratification and less than 10% for stable stratification. This414

means that only a smaller part of the data originally shown in Figure 3 fulfills the more415

restrictive criterion for the pure states of anisotropy (cf. Figure 5). However, it also il-416

lustrates that the more pure states of anisotropy are those that have a stronger impact417

on similarity scaling, attracting the data towards different scaling curves as seen in Fig-418

ure 5. For example, both CASES-99 and METCRAX II have the largest proportion of419

isotropic turbulence, which accounts for the largest scatter in scaled horizontal veloc-420

ities in Figures 3 and 4 as mentioned above. Stiperski and Calaf [2018] already showed421

that unstable isotropic turbulence occurs mostly under conditions of free convection away422

from the surface, which coincides with the fact that all stations with prevailing isotropic423

turbulence are indeed located in areas that can be expected to frequently experience con-424

ditions supportive of free convection and generally have taller towers (flat terrain and425

more desert-like location, e.g. CASES-99, METCRAX II, MATERHORN, i-Box0). On426

the contrary, in complex terrain and close to the surface, isotropic turbulence hardly ever427

occurs (e.g., i-Box27). The reason for this is the fact that in complex terrain thermally428

driven flows, characterized by strong horizontal and vertical wind shear [cf. Goger et al.,429

2018], develop in conditions that in flat terrain would support free convection (i.e., weak430

shear). Given that different datasets were not only measured over different surfaces but431

also in different weather conditions we cannot isolate the influence of terrain on the fre-432

quency of pure anisotropic states by examining all the datasets together. Therefore, we433

focus next only on data from datasets obtained from multiple towers in close proxim-434

ity to each other and therefore experiencing similar weather conditions (e.g. T-Rex, MATER-435

HORN, i-Box). For example, T-Rex Central and West tower appear to have almost iden-436

tical percentages of pure states, thus suggesting that the slope angle does not play a ma-437

jor role on the anisotropy type there, at least not in unstable conditions. In stable con-438

ditions, the West tower on the slope has a marginally higher prevalence of isotropic data439

than the Central tower on the valley floor, suggestive of more developed turbulence there.440

Interesting are also the two MATERHORN towers both experiencing katabatic winds441

during nighttime [cf. Grachev et al., 2016], however MT4 has a larger incidence of pure442

states than the MT5 tower, possibly due to its location in a less constrained topographic443

surrounding (open slope). For i-Box sites, the frequency of unstable two-component ax-444

isymmetric turbulence (stable isotropic turbulence) appears to decrease (increase) with445

increasing terrain complexity.446

Still, even this classification approach fails to identify patterns that connect anisotropy447

and turbulence complexity. The available methodology consequently appears to be in-448

adequate to correctly describe the complexity of turbulence caused by both the terrain449

complexity (slope angle, heterogeneity, land use) and complexity of the flow conditions.450
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Figure 7. Frequency of occurrence (n/ntot) of pure states of anisotropy (one-component, two-

component axisymmetric and isotropic) for a)–c) unstable and d) – f) stable stratification. Here n is the

number of averaging periods that are unstable/stable and at the same time belong to one of the pure

anisotropy states, while ntot is the total number of periods that are unstable/stable.

466

467

468

469

Therefore we propose instead to use the deviation from traditional similarity scaling re-451

lations (MAD) as a measure of complexity of a given dataset. The encouraging results452

presented above make us confident that anisotropy is the dominant process causing the453

departure from scaling for unstable stratification and that including information on it454

would improve scaling relations.We therefore hypothesize that these deviations from scal-455

ing exist due to the fact that scaling relations are estimated in the physical, streamwise456

Cartesian coordinate system, whereas anisotropy is defined in the eigenvector reference457

frame. Similarly, Klipp [2018] suggested calculating the friction velocity in the eigenvec-458

tor space as a means of improving scaling relations. Here, we apply a different approach459

and instead use anisotropy as one of the explanatory variables that causes deviations from460

scaling curves. For stable stratification where anisotropy fails to improve scaling for two-461

and one-component turbulence, we identify other physical mechanisms that could be re-462

sponsible for the existence of complexity. We believe, that such an objective measure of463

complexity will not only allow better comparison between datasets but it can provide464

a pathway for developing new universal scaling relations.465

4 Quantifying Complexity470

We now take a step back and instead of focusing only on the pure states of anisotropy,475

we look at all the turbulence states (including mixed states) of anisotropy together. Fig-476

ure 8 shows where the centre of mass in the BLT resides for each dataset. The size of477

the colored triangle represents the spread of the data and is calculated as the 75th per-478

centile in x and y direction. The centres of mass show that, for unstable stratification,479

data are mostly centered between the isotropic and two-component axisymmetric states,480

whereas for stable conditions they are more evenly spread between the two- and one-component481

states but generally closer to the isotropic limit. The same as with frequency of occur-482

rence of pure states, the information on the centre of mass does not provide a conclu-483

sive information on the causes of turbulence complexity.484

Complexity in the atmospheric boundary layer can be caused by a number of pro-485

cesses acting on a range of scales. While we use the departure from the scaling curve as486

a measure of complexity, the causes of this departure have to be identified manually from487

a number of possible processes known to be relevant in complex terrain [cf. Serafin et al.,488

2018]. These include (but are not limited to) the influence of terrain, where the easiest489

measure of terrain influence is the slope angle α. Although in the analysis so far, slope490

angle did not show a systematic influence on scaling, the inclination of terrain can still491

act indirectly and this influence is therefore examined. Heterogeneity, although a signif-492

icant source of complexity due to the formation of internal boundary layers as well as493

secondary circulations, is hard to quantify from experimental data and is therefore not494

examined here. Secondly, given the success of anisotropy in improving scaling in the re-495

sults of the previous section, we examine anisotropy itself as a dominant variable influ-496

encing complexity. We use the coordinates of the BLT as scalar measures of anisotropy497

that encompases all types of anisotropy (cf. Figure 8). Here yB represents the shortest498

–17–



This article is a non-peer reviewed preprint submitted to JGR-Atmospheres and published at EarthArXiv

Figure 8. Barycentric Lumley Triangle showing the centre of mass for all the data points

within the triangle for each dataset and stability. Different datasets are shown in color. Colored

triangles represent the amount of spread of the data (calculated from the 75th percentile, and are

calculated around the centre of mass.

471

472

473

474

distance to pure isotropy similarly to what was used in [Brugger et al., 2018], while xB499

shows where in between two-component axisymmetric and one-component state the tur-500

bulence is situated. Two mesoscale processes are ubiquitous in complex terrain: thermally-501

driven flows (up/down-valley, up/down-slope) and shallow water effects such as gravity502

waves. Thermally-driven flows are characterized by significant wind turning with height503

[Rotach et al., 2008]. The impact of this directional shear can be measured through the504

angle between the streamwise u′w′ and spanwise v′w′ momentum flux components, de-505

fined as506

αvw = tan−1(
v′w′

u′w′
). (13)

If there is no directional shear, v′w′ = 0, then αvw will also be zero as all the turbu-507

lence exchange of momentum will occur along the streamwise direction (recall that the508

double rotation orientates the coordinate system into the direction of the mean wind speed).509

The effect of wind turning on turbulence is therefore indirect, since it does not depend510

on driving parameters at the level where the momentum flux is measured but at heights511

below and above. This measure is convenient since it provides information on wind turn-512

ing even if measurements are available only at one measurement level. Shallow water modes,513

such as gravity waves, may also affect turbulence [Sun et al., 2015] and can be quanti-514

fied through the Froude number515

Fr =
U√
gH

, (14)

where H is the layer depth. Given that we have no way of determining the depth scale516

H from the available measurements, it has to be parameterized. For this purpose we use517

a modified boundary layer height following Zilitinkevich et al. [2012],518

H =
w′w′√
|fwθg/θ|

, (15)
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Figure 9. a) - b) Correlation matrix between the observed deviations from scaling

(∆Φy, y = u, v, w, θ, ε) and the relevant variables representing physical processes for a) unsta-

ble and b) stable stratification. The correlation coefficients are shown in color and shape so that

perfectly circular shape means zero correlation and perfect line has correlation coefficient equal

to 1. Crosses signify correlations that are not statistically significant at a 5 % level. c) - d) List

of statistically significant (p < 0.05) variables and their respective R2 values from the linear

and multilinear regression with ∆Φy, y = u, v, w, θ, ε for c) unstable and d) stable stratification.

Variables that are statistically significant are shown in bold.

527

528

529

530

531

532

533

534

where f is the Coriolis parameter, and we use the vertical velocity variance instead of519

friction velocity, following Monti et al. [2002].520

Finally, the influence of the smaller-scale anisotropy i.e. anisotropy in the inertial521

subrange [cf. Katul et al., 1995; Toschi et al., 2000; Poggi et al., 2003], can be estimated522

through the ratio of turbulence dissipation rates523

εvu = εv/εu, εwu = εw/εu. (16)

Here εi is the dissipation rate as determined from the spectral density in the inertial sub-524

range of the velocity component i. Babić and Rotach [2018] have shown that over het-525

erogeneous surfaces these ratios, particularly εwu, can deviate strongly from one.526

In order to identify which of these processes are relevant in complex terrain and538

therefore causing largest departures from scaling we first individually employ the linear539

regression approach to determine the correlation between the departure from scaling ∆Φy, y =540

u, v, w, θ, ε and the corresponding predictor variables (xB , yB , α, αvw, Fr, εvu, εwu). The541

correlation coefficients are shown in Figure 9 for unstable and stable stratification. Sec-542

ondly, a multlinear regression with the relevant variables was performed to estimate the543

joint influence of these processes on the departure from scaling. How many and which544

variables were chosen for the multilinear regression was determined in a step-wise man-545

ner. From the step-wise procedure we choose as final the combination of statistically sig-546

nificant variables (p < 0.05) with the largest R2 and smallest Bayesian Information Cri-547

terion (BIC; Wilks [2011]). The variables in linear and multilinear regression are shown548
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Figure 10. Comparison of observed deviations from scaling (∆Φyobs) and those modelled

by multilinear regression (∆Φymod) using variables from Figure 9c & d (Multilinear regression).

Here y = u, v, w, θ, ε.

535

536

537
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in Figure 9 c&d, and the observed departures from scaling and the ones predicted by mul-549

tilinear regression are shown in Figure 10. The largest limitation of this approach is of550

course the assumption of a linear relationship between predictors and the explanatory551

variable.552

The results of both linear and multilinear regression (Figure 9) show that yB and553

therefore the shortest distance to isotropic state is truly one of the most important ex-554

planatory variables both in unstable and stable stratification, confirming the results of555

the previous section. Indeed, yB can explain up to 80% of variability between the com-556

plex terrain scaling relations for certain variables and stability ranges. The correlation557

with yB is positive indicating that the increase of complexity coincides with the depar-558

ture from isotropic conditions. In the unstable regime the other important process in-559

fluencing complexity is the small-scale turbulence anisotropy shown through εvu. Although560

the value of this ratio is within the 20% margin of one and therefore could be consid-561

ered almost constant (not shown), the individual values show a negative correlation with562

increasing complexity (apart from scaled temperature), indicating interestingly that the563

turbulence with a higher degree of horizontal small-scale isotropy is found in more com-564

plex conditions. These results are also contrary to Babić and Rotach [2018] where εwu565

diverges more from one. In the stable regime where anisotropy was successful in improv-566

ing scaling only in isotropic conditions, the mesoscale processes appear to be more im-567

portant than in the unstable regime. Therefore, wind turning with height (αvw) and to568

a lesser degree the Froude number Fr appear to additionally explain an important part569

of the observed complexity.570

The clear connection between ∆Φu,v and yB comes as no surprise given previous571

evidence that isotropic and two-component turbulence occupy different scaling curves,572

so that the distance to isotropy clearly delineates stations that have different percent-573

ages of these pure states and therefore cluster around them. On the other hand, in sta-574

ble stratification, it is the deviation of vertical velocity variance ∆Φw that (anti)correlates575

best with yB suggesting that unlike in unstable stratification, it is in the vertical veloc-576

ity component that anisotropy shows largest differences. This is intuitive given that as577

stratification increases, the vertical velocity variance decreases from isotropic towards578

one component with a progressively lower neutral limit, as observed in Figure 5. The im-579

portance of distinguishing between the very anisotropic states (two and one-component,580

i.e., xB) is also clearly identified as important for stable stratification, where one-component581

turbulence occurs more frequently. The existence of wind turning with height appears582

to have the largest influence on ∆Φu in stable conditions, whereas scalar variances ap-583

pear to be most affected by gravity waves. The fact that the results are dependent on584

the ratio of the dissipation rates points to the scale-dependence of anisotropy and the585

persistence of anisotropy to very small scales. Toschi et al. [2000] have shown that this586

might be due to the effect of wind shear persisting across all scales.587

Figure 9 shows that the multlinear combination of the above identified processes588

explains the majority of the variance for the standard deviation of velocity components,589

and to a lesser degree of the scalar variances (temperature and TKE dissipation rate)590

indicating the dissimilarity between the momentum and scalars Brutsaert [1982], but also591

pointing towards missing processes that have either not been identified by our limited592

list or are non-linear and therefore are not detected by the linear method.593

5 Discussion and conclusions594

The results of the previous sections have highlighted the importance of anisotropy595

in shaping the scaling relations, and have therefore shown that the approach of Stiper-596

ski and Calaf [2018] accounting for anisotropy, significantly improves scaling even over597

highly complex terrain. The large site-to-site variability in turbulence structure commonly598

found over complex terrain was then shown to be due to the differences in the frequency599
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of occurrence of each anisotropy type, causing large scatter in the data, as different anisotropy600

states follow different scaling curves. For unstable stratification, anisotropy itself was found601

to be the dominant processes causing the failure of scaling among the various datasets.602

Whether the isotropic state or the two-component turbulence should actually be taken603

as the reference state in unstable stratification remains a question - especially since the604

atmospheric boundary layer turbulence is determined by the interplay between shear-605

and buoyancy-dominated turbulence (and the former is by definition anisotropic). Given606

the fact that two-component turbulence is more prevalent in unstable stratification and607

the data fit classic scaling relations better, suggests that the two-component limit is the608

reference state for unstable stratification. For stable stratification, isotropic turbulence609

is clearly the reference turbulence state, corresponding to weakly stable boundary lay-610

ers with well-developed turbulence [cf. Stiperski and Calaf , 2018]. In stable stratifica-611

tion, however, we see that anisotropy itself cannot explain all the variability observed.612

It was therefore shown that physical mechanisms, such as wind directional shear, as well613

as effects of mean wind speed gradients persisting to the smallest scales and affecting tur-614

bulence in the inertial subrange, cause the complexity of turbulence. While these pro-615

cesses obviously occur also over flat and homogeneous terrain, they are more frequent616

and their effects more pronounced in complex terrain.617

Another relevant issue associated with turbulence in complex terrain is the depth618

of the boundary layer [Rotach and Zardi , 2007; De Wekker and Kossmann, 2015; Lehner619

and Rotach, 2018], and consequently of the surface layer. Whereas we are employing lo-620

cal scaling (and not the Monin-Obukhov similarity scaling) and therefore do not require621

that the measurement levels are strictly within the surface layer, it is important to in-622

vestigate the validity of this hypothesis. We therefore examine the median absolute de-623

viations from scaling (∆Φy) as a function of measurement height for data separated ac-624

cording to anistropy (Figure 11). Compering the influence of height (stability) on scal-625

ing, shows that the height dependence within a given tower is on the same order as the626

site to site variability. Indeed, the deviations from scaling show almost no height depen-627

dence for isotropic turbulence, particularly for Φw,Φθ,Φε. There is a larger but non-systematic628

variability for the horizontal velocity components under conditions of two-component ax-629

isymmetric turbulence, particularly for stable stratification, suggestive of intermittent630

conditions and layering associated with this type of very stable turbulence.631

These results suggest that the physics represented by the newly introduced vari-632

ables yB , εvu, αvw, Fr should be considered when working on the development of new scal-633

ing relations. Additionally, the present results suggest that the multilinear regression ex-634

pressions such as found in this work could be used more effectively when determining635

complexity of a given dataset than traditional measures, such as slope angle. It is quite636

likely, however, that at least part of the remaining scatter (cf., Figure 9 will be associ-637

ated with spatial (horizontal) heterogeneity, which is inherent in complex terrain but dif-638

ficult to assess from single-tower observations. Before expressions for accounting for com-639

plexity in scaling relations themselves are used, this study would have to be extended640

to more than twelve datasets to improve its statistical significance. Of particular need641

in this respect would be horizontally distributed and long-term turbulence measurements642

from tall towers over very complex mountainous terrain. It is, however, already clear that643

this methodology provides a direction towards a unified theory of near-surface turbulence644

in terrains of all kinds of complexity. This will have particularly large implications for645

numerical modelling of weather and climate, where turbulence is parametrized by us-646

ing scaling relations developed and hence only valid over flat and horizontally homoge-647

neous terrain.648
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