

ELEKTROKEMIJA

dr. sc. TIN KLAČIĆ

Zavod za fizikalnu kemiju Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu E-mail: tklacic@chem.pmf.hr Telefon: +385 1 4606 148

2024./2025.

SADRŽAJ

§ 1. Uvod

§2. Ionika

- električna provodnost elektrolita
- mjerenje električne provodnosti elektrolita
- molarna provodnost elektrolita
- Kohlrauschov zakon
- Ostwaldov zakon razrjeđenja
- prijenosni broj
- modeli elektrolitne otopine (Debye-Hückelov model i Bjerrumov model)

§ 3. Elektrodika

- elektrolizni članci
- galvanski članci
- Nernstova jednadžba
- utjecaj temperature na elektromotivnost članka
- vrste elektroda

UVOD

 – elektrokemija je znanstvena disciplina koja se bavi proučavanjem ionskih i elektrodnih sustava te procesa koji se odvijaju u ovim sustavima

665. Finally, I require a term to express those bodies which can pass to the *electrodes*, or, as they are usually called, the poles. Substances are frequently spoken of as being *electro-negative*, or *electro-positive*, according as they go under the supposed influence of a direct attraction to the positive or negative pole. But these terms are much too significant for the use to which I should have to put them; for though the meanings are perhaps right, they are only hypothetical, and may be wrong; and then, through a very imperceptible, but still very dangerous, because continual, influence, they do great injury to science, by contracting and limiting the habitual views of those engaged in pursuing it. I propose to distinguish these bodies by calling those *anions** which go to the *anode* of the decomposing body; and those passing to the *cathode*, *cations* \uparrow ; and when I have occasion to speak of these together, I shall call them *ions*. Thus, the chloride of lead is an *electrolyte*, and when *electrolyzed* evolves the two *ions*, chlorine and lead, the former being an *anion*, and the latter a *cation*.

Slika 1. Dio publikacije M. Faradaya u kojoj se po prvi puta spominju pojmovi kation, anion i ion.¹

¹ M. Faraday, *Philos. Trans. R. Soc.* **124** (1834) 77-122.

 $1,35 \times 10^{-9}$

 $2,0 \times 10^{-16}$

ELEKTRIČNA PROVODNOST ELEKTROLITA

– elektrolit je tvar prisutna u talini ili otopini koja je barem djelomično u obliku nabijenih čestica

– Ohmov zakon:	Tablica 1. Električna provodnost nekih tvari pri 18 °C.	
$I = \frac{U}{R}$ $I = \frac{U}{R}$ $I = \frac{U}{R}$ $I = \frac{I}{R}$	Tvar	<i>к</i> / S ст ⁻¹
- otpor vodiča: $R = \rho \frac{l}{A}$ $\rho - \text{električna otpornost } [\Omega \text{ cm}]$ $l - \text{duljina } [\text{cm}]$ $A - \text{površina } [\text{cm}^2]$	srebro	615000
	živa	10460
	NaCl(l) na 750 °C	3,4
	$H_2SO_4(aq)$ c = 0,05 mol dm ⁻³	0,74
$G = \frac{1}{R} \qquad \kappa = \frac{1}{\rho}$	$KCl(aq, c = 0, 1 \text{ mol } dm^{-3})$	0,011
	etanol	$1,35 \times 10^{-9}$
	sumpor	2,0 × 10 ⁻¹⁶
κ – električna provodnost [S cm ⁻¹]		

MJERENJE ELEKTRIČNE PROVODNOSTI ELEKTROLITA

- električna provodnost elektrolita određuje se konduktometrom

$$R = \frac{1}{\kappa} \cdot \frac{l}{A}$$

$$K_{\text{cell}} = \frac{l}{A}$$

– otpor otopine elektrolita:

 K_{cell} – konstanta konduktometrijske ćelije [cm⁻¹] A – površina elektroda [cm²] l – razmak između elektroda [cm]

 $R = \frac{K_{\text{cell}}}{\kappa} \qquad G = \frac{\kappa}{K_{\text{cell}}}$

Slika 2. Shema konduktometrijske ćelije uronjene u otopinu elektrolita.

 konstanta konduktometrijske ćelije odredi se baždarenjem s otopinom KCl-a poznate koncentracije i električne provodnosti

MOLARNA PROVODNOST ELEKTROLITA

– električna provodnost ovisi o vrsti i koncentraciji iona, vrsti otapala i temperaturi

provodnosti na jake i slabe

koncentraciji za jaki i slabi elektrolit.

– molarna provodnost elektrolita se smanjuje s povećanjem koncentracije zbog većeg broja elektrostatskih interakcija te zbog smanjenja stupnja disocijacije kod slabih elektrolita

§ 2. Ionika

KOHLRAUSCHOV ZAKON

– Kohlrauschov zakon drugog korijena:

$$\Lambda = \Lambda_0 - b\sqrt{c}$$

Λ – molarna provodnost [S cm² mol⁻¹]
 Λ₀ – molarna provodnost pri beskonačnom razrjeđenju [S cm² mol⁻¹]
 b – Kohlrauschov koeficijent [S cm^{7/2} mol^{-1/2}]
 c – množinska koncentracija [mol dm⁻³]

- vrijedi samo za jake elektrolite

Slika 4. Friedrich Wilhelm Georg Kohlrausch (1840 – 1910).²

² E. Katz, *Electrochem. Sci. Adv.* **2** (2021) e216008.

Slika 5. Ovisnost molarne provodnosti jakog elektrolita o drugom korijenu njegove koncentracije.

 $\beta = \Lambda_0$

- Kohlrauschov zakon o neovisnom putovanju iona:

$$M_m A_a \rightarrow m M^{z(m)+} + a A^{z(a)-}$$

Tablica 2. Molarne provodnosti nekih iona u vodi pri 25 °C.

Ion	λ_0 / S cm ² mol ⁻¹	
H+	349,8	
Li ⁺	38,7	
Ca^{2+}	119,0	
La ³⁺	209,1	
OH^-	198,6	
F^-	5,4	
Br [–]	78,14	
SO_4^{2-}	160,0	

 $\Lambda_0(\mathbf{M}_{\mathbf{m}}\mathbf{A}_{\mathbf{a}}) = \mathbf{m}\lambda_0(\mathbf{M}) + \mathbf{a}\lambda_0(\mathbf{A})$

$$\begin{split} & \Lambda_0 - \text{molarna provodnost elektrolita pri} \\ & \text{beskonačnom razrjeđenju [S cm² mol^{-1}]} \\ & \lambda_0(M) - \text{molarna provodnost } M^{z(M)+} \text{ iona pri} \\ & \text{beskonačnom razrjeđenju [S cm² mol^{-1}]} \\ & \lambda_0(A) - \text{molarna provodnost } A^{z(a)-} \text{ iona pri} \\ & \text{beskonačnom razrjeđenju [S cm² mol^{-1}]} \end{split}$$

Slika 6. Grotthussov mehanizam vodljivosti.

OSTWALDOV ZAKON RAZRJEĐENJA

Slika 7. Wilhelm Ostwald (1853 – 1932).³

³ https://en.wikipedia.org/wiki/Wilhelm_Ostwald (datum pristupa: 18.11.2024.)

$$\kappa \big(\mathbf{H} \mathbf{A} \big) = \kappa \Big(\mathbf{H}^+ \Big) + \kappa \Big(\mathbf{A}^- \Big)$$

$$\begin{split} &\kappa \! \left(\mathbf{H}^{+} \right) \! = \! \lambda \! \left(\mathbf{H}^{+} \right) \! \left[\mathbf{H}^{+} \right] \! = \! \lambda \! \left(\mathbf{H}^{+} \right) \! \alpha \boldsymbol{c}_{\mathbf{u} \mathbf{k}} \\ & \kappa \! \left(\mathbf{A}^{-} \right) \! = \! \lambda \! \left(\mathbf{A}^{-} \right) \! \left[\mathbf{A}^{-} \right] \! = \! \lambda \! \left(\mathbf{A}^{-} \right) \! \alpha \boldsymbol{c}_{\mathbf{u} \mathbf{k}} \end{split}$$

$$\begin{split} &\kappa \left({\rm HA} \right) \!=\! \alpha c_{\rm uk} \! \left[\! \lambda \! \left({\rm H}^+ \right) \! +\! \lambda \! \left({\rm A}^- \right) \! \right] \\ & \frac{\kappa \! \left({\rm HA} \right)}{c_{\rm uk}} \! =\! \Lambda \! \left({\rm HA} \right) \! =\! \alpha \! \left[\lambda \! \left({\rm H}^+ \right) \! +\! \lambda \! \left({\rm A}^- \right) \! \right] \end{split}$$

$$\begin{split} \lambda \! \left(\mathbf{H}^{+} \right) &\approx \lambda_{0} \! \left(\mathbf{H}^{+} \right) \qquad \lambda \! \left(\mathbf{A}^{-} \right) &\approx \lambda_{0} \! \left(\mathbf{A}^{-} \right) \\ \Lambda \! \left(\mathbf{H} \mathbf{A} \right) &= \alpha \! \Lambda_{0} \! \left(\mathbf{H} \mathbf{A} \right) \\ \\ \hline \alpha &= \! \frac{\Lambda \! \left(\mathbf{H} \mathbf{A} \right) }{\Lambda_{0} \! \left(\mathbf{H} \mathbf{A} \right)} \end{split}$$

$$K = \frac{\alpha^2 c_{\text{uk}}}{1 - \alpha} = \frac{\frac{\Lambda (\text{HA})^2}{\Lambda_0 (\text{HA})^2} c_{\text{uk}}}{1 - \frac{\Lambda (\text{HA})}{\Lambda_0 (\text{HA})}}$$

$$\begin{split} K &= \frac{\Lambda (\mathrm{HA})^2 \, c_{\mathrm{uk}}}{\Lambda_0 \, (\mathrm{HA})^2 - \Lambda (\mathrm{HA}) \Lambda_0 \, (\mathrm{HA})} \\ &\frac{1}{\Lambda (\mathrm{HA})} = \frac{1}{\Lambda_0 \, (\mathrm{HA})} + \frac{\Lambda (\mathrm{HA}) c_{\mathrm{uk}}}{K \Lambda_0 \, (\mathrm{HA})^2} \end{split}$$

$$\frac{1}{\boldsymbol{\Lambda}(\mathrm{HA})} = \frac{1}{\boldsymbol{\Lambda}_{0}\left(\mathrm{HA}\right)} + \frac{\kappa}{\boldsymbol{K}\boldsymbol{\Lambda}_{0}\left(\mathrm{HA}\right)^{2}}$$

 $a = \frac{1}{K \Lambda_c^2}$

Slika 8. Ovisnost recipročne vrijednosti molarne provodnosti slabog elektrolita o električnoj provodnosti.

PRIJENOSNI BROJ IONA

 – udio električne struje koji ionska vrsta prenese otopinom

$$t_{i} = \frac{I_{i}}{I_{uk}} = \frac{Q_{i}}{Q_{uk}} \qquad t_{i} = \frac{c_{i}\lambda_{i}}{\sum_{i=1}^{N} c_{i}\lambda_{i}}$$

 $c_{\rm i}$ – koncentracija iona [mol dm⁻³] $\Lambda_{\rm i}$ – molarna provodnost iona [S cm² mol⁻¹]

$$M_m A_a \rightarrow m \ M^{z(m)+} + a \ A^{z(a)-}$$

$$t_{\rm M} = \frac{m\lambda_{\rm M}}{m\lambda_{\rm M} + a\lambda_{\rm A}} \quad t_{\rm A} = \frac{a\lambda_{\rm A}}{m\lambda_{\rm M} + a\lambda_{\rm A}}$$

Slika 9. Hittorfova aparatura za određivanje prijenosnog broja iona.⁴

⁴N. Kallay, S. Žalac, D. Kovačević, T. Preočanin, A. Čop, *Osnovni praktikum fizikalne kemije*, Zavod za fizikalnu kemiju, Prirodoslovno-matematički fakultet, Zagreb, 2002, str. 29.

MODELI ELEKTROLITNE OTOPINE

Po čemu se otopine elektrolita razlikuju od otopina neelektrolita?

1) Otopine elektrolita provode električnu struju.

2) Otopine elektrolita značajnije odstupaju od idealnosti u odnosu na otopine neelektrolita ($\gamma \neq 1$).

- odstupanje od idealnosti otopina elektrolita očituje se u rezultatima mjerenja osmotskog tlaka, sniženja ledišta, povećanja vrelišta, vodljivosti, topljivosti soli, elektromotivnosti galvanskih članaka, itd.
- modeli elektrolitne otopine:
 - model "ionskog oblaka"
 - model ionske asocijacije

MODEL "IONSKOG OBLAKA"

Slika 10. Peter Debye (1884 – 1966).⁵

Slika 11. Erich Hückel (1896 – 1980).⁶

 prvi "uspješni" način obračunavanja interakcija među ionima u otopini jakog elektrolita

No. 9. I. Ma Redaktionsschluß für 3	i 1923. No. (1 am to, Mai 1921). 24. Jahrgang
TNH	AT/P:
Uriginalmittellungen: P. Debye u. E. Hückel, Zur Theorie der Elektro- lyte. S. t85.	Vorlesungsverzeichnis für das Sommersemester 1923 S. 206. Personalien. S. 208.
ORIGINALMIT	TEILUNGEN.
Zur Theorie der Elektrolyte.	hiermit eingeführte "osmotische Koeffizient" /e
L Gefrierpunktserniedrigung und ver- wandte Erscheinungen.	unabhängig von jeder Theorie, jene Abweichunger messen soll und als Funktion von Konzentration Druck und Temperatur beobachtbar ist. In Wirk
Von P. Debye und E. Hückel').	lichkeit beziehen sich solche Beobachtunger nicht unmittelbar auf den osmotischen Druc
§ 1. Einleitung.	selber, sondern auf Gefrierpunktserniedrigung
Bekanntlich deutet die Arrheniussche Disso- ziationshypothese 'die bei den Elektrolytlösungen beobachteten abnormal großen Werte von osmoti-	bzw, Stedepunktserhöhung, welche beide au thermodynamischen Gründen mit Hilfe desselber osmotischen Koeffizienten /g aus ihren nach den van it. Holfischen Gesetz für erführenmen
schem Druck, Gefrierpunktserniedrigung usw., durch die Existenz freier lonen und der damit Hand in Hand gehenden Vermehrung der Zahl	Dissoziation folgenden Grenzwerten ableitba sind.
der Einzelteilchen. Die quantitative Theorie	Die nächstliegende Annahme zur Erklärung
Ubertragung der Gesetze idealer Gase auf die	ist die klassische, wonach nicht alle Moleküle
verdünnten Lösungen zur Berechnung ihres	in Ionen dissoriiert sind, sondern zwischen disso
Osmotischen Druckes. Da es möglich ist, diese Übertragung thermodynamisch zu begründen.	gewicht besteht, welches von der Gesamtkonzen
so besteht kein Zweifel an der Gültigkeit der	tration, sowie von Druck und Temperatur ab
Bei endlicher Konzentration aber ergeben	dementsprechend variabel, und zwar würde sie
sich für Gefrierpunktserniedrigung, Leitfähig-	direkt proportional fo zu setzen sein. Die quanti
keit usw. Werte, welche kleiner sind, als man auf den ersten Blick beim Vorhandensein einer	sich auf die Konzentration beziehen, stützt sich
vollkommenen Dissoziation der Elektrolyte in	auf den Guldberg-Waageschen Ansatz, die
Ionen erwarten müßte. Ist z.B. P_k der osmotische Druck, welcher sich nach dem klassischen van t	Gleichgewichtskonstanten von Temperatur und
Hoffschen Gesetz für vollkommene Dissoziation	Druck ist nach van't Hoff auf thermo
ergibl, so ist der tatsächlich zu beobachtende osmotische Druck kleiner, so daß	ganze Komplex von Abhängigkeiten, mit Ein
$P = /_0 P_*$,	schluß des Guldberg-Waageschen Ansatzes
wobei in Übereinstimmung mit Bjerrum ²) der	gründet werden.
t) Angeregt wurde ich zu den voeliegenden Über-	Da die elektrische Leitfähigkeit nur durch die lonen bedingt wird und nach der klassischen
hiesigen Physikalischen Gezellschaft über die Ghosh-	Theorie aus f_0 die Zahl der Ionen ohne weiteres
denen hier zur Berechnung von Gefrierpunktserniedrigung,	folgt, so erhebt diese Theorie die Forderung
anter anderem zu dem Grenzgesetz mit der zweiten Wurzel	zwischen den beiden Abhängigkeiten von Leit-
im hiesigen Kolloquium berichten. Unter der tätigen	fähigkeit einerseits, osmotischem Druck anderer-
minnie meines Assistenten Dr. E. Hückel fand dann m Winter 1922 die eingehende Diskussion der Ergebnisse	Eine große Gruppe von Elektrolyten, die
 and thre Zusammenfaisung statt. P. Debye. a) N. Bjerrum, Zeitachr. f. Elektrochemie 24, 231. 	starken Säuren, Basen und die Salze derselben,

Slika 12. Naslovnica publikacije Debyea i Hückela.⁷

⁵ https://journals.iucr.org/q/issues/1967/06/00/a05589/a05589.pdf (datum pristupa: 20.11.2024)
⁶ https://en.wikipedia.org/wiki/Erich_H%C3%BCckel#/media/File:Hueckel.jpg (datum pristupa: 20.11.2024.)
⁷ P. Debye, E. Hückel, *Physik. Zeitschr.* 9 (1923) 185-206.

- pretpostavke modela:
 - ✤ elektrolit potpuno disocira
 - ioni su tvrde nestlačive i nepolarizabilne kuglice određenog promjera i naboja
 - ✤ otapalo je dielektrični kontinuum
 - sve interakcije između iona osim elektrostatskih su zanemarive
 - svaki ion u otopini okružen je statistički raspoređenim anionima i kationima, tzv. "ionskim oblakom"
 - ionski oblak ima naboj koji je jednak naboju centralnog iona, ali je suprotnog predznaka
 - ✤ elektrostriktivni efekt zanemariv

Slika 13. Model "ionskog oblaka".⁸

- konačni rezultati teorije:
 - prosječna debljina ionskog oblaka
 - ✤ koeficijent aktiviteta

⁸ https://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_theory (datum pristupa: 21.11.2024)

prosječna debljina ionskog oblaka (Debyeva duljina) predstavlja najvjerojatniju udaljenost ion-protuion

- $l_{\rm D}$ Debyeva duljina [m] $\varepsilon_{\rm r}$ – relativna permitivnost medija ε_0 – permitivnost vakuuma [8,8542 × 10⁻¹² F m⁻¹] R – opća plinska konstanta [8,3145 J K⁻¹ mol⁻¹] T – temperatura [K] F – Faradayeva konstanta [96 485 C mol⁻¹] I_c – ionska jakost otopine [mol dm⁻³]
- ionska jakost je mjera jakosti električnog polja uzrokovana prisutnošću iona u nekoj otopini

$$I_{c} = \frac{1}{2} \sum_{i=1}^{N} c_{i} z_{i}^{2} \qquad I_{b} = \frac{1}{2} \sum_{i=1}^{N} b_{i} z_{i}^{2}$$

 z_i – nabojni broj iona c_i – množinska koncentracija iona [mol dm⁻³] b_i – molalnost iona [mol kg⁻¹]

Tablica 3. Utjecaj ionske jakosti otopine na Debyevu duljinu.

$I_{\rm c}$ / mol dm ⁻³	<i>l</i> _D / nm
0,01	3,04
0,10	0,96
0,30	0,30

 koeficijent aktiviteta je bezdimenzijski faktor koji pokazuje odstupanje otopine od idealnog ponašanja

$$-\log \gamma_{i} = \frac{A_{c} z_{i}^{2} \sqrt{I_{c} / c^{\Phi}}}{1 + aB\sqrt{I_{c} / c^{\Phi}}}$$
$$-\log \gamma_{i} = \frac{A_{b} z_{i}^{2} \sqrt{I_{b} / b^{\Phi}}}{1 + aB\sqrt{I_{b} / b^{\Phi}}}$$

 γ_i – koeficijent aktiviteta iona A_c i A_b – koeficijenti z_i – nabojni broj iona a – promjer iona [m] B – koeficijent [m⁻¹] I_c – ionska jakost otopine [mol dm⁻³] I_b – ionska jakost otopine [mol kg⁻¹]

– koeficijenti A i B ovise o vrsti otapala i temperaturi

$$A_c = \frac{eF^2(c^{\Phi})^{1/2}}{2\pi \ln 10(2\varepsilon_r \varepsilon_0 RT)^{3/2}}$$

$$B = \sqrt{\frac{2F^2c^{\bullet}}{\varepsilon_r \varepsilon_0 RT}}$$

- e elementarni naboj [1,602 × 10⁻¹⁹ C]
- $\varepsilon_{\rm r}$ relativna permitivnost medija
- ε_0 permitivnost vakuuma [8,8542 × 10⁻¹² F m⁻¹]
- R opća plinska konstanta [8,3145 J K⁻¹ mol⁻¹]
- *T* temperatura [K]
- F Faradayeva konstanta [96 485 C mol⁻¹]

$$A_c = 0,509$$
 $A_b = 0,511$

- ionske koeficijente aktiviteta nije moguće eksperimentalno odrediti
- prosječni koeficijenta aktiviteta je geometrijska sredina ionskih koeficijenta aktiviteta

$$\overline{\gamma}_{\pm} = \left(\prod_{i=1}^{N} \gamma_i^{\nu_i}\right)^{1/\sum_{i=1}^{N} \nu_i} \qquad \gamma_i - \text{koeficijent aktiviteta iona} \\ \nu_i - \text{stehiometrijski koeficijent iona}$$

– primjerice za otopinu H_2SO_4 vrijedi:

$$\overline{\gamma}_{\pm} = \left[\gamma \left(\mathrm{H}^{+} \right)^{2} \gamma \left(\mathrm{SO}_{4}^{2} \right) \right]^{1/3}$$

$$-\log \overline{\gamma}_{\pm} = \frac{A_c |z_+ z_-| \sqrt{I_c / c^{\Phi}}}{1 + aB\sqrt{I_c / c^{\Phi}}} \qquad -\log \overline{\gamma}_{\pm} = \frac{A_b |z_+ z_-| \sqrt{I_b / b^{\Phi}}}{1 + aB\sqrt{I_b / b^{\Phi}}}$$

$$-\log \overline{\gamma}_{\pm} = \frac{A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + aB\sqrt{I_c / c^{\varphi}}}$$

$$B = \sqrt{\frac{2F^2 c^{\varphi}}{\varepsilon_r \varepsilon_0 RT}} \quad B = 3,29 \text{ nm}^{-1} \qquad I_c < 0,001 \text{ mol dm}^{-3}$$

$$a \approx 0,3 \text{ nm} \rightarrow aB \approx 1 \qquad aB\sqrt{I_c / c^{\varphi}} <<1$$

$$-\log \overline{\gamma}_{\pm} = \frac{A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

$$rac{1}{-\log \overline{\gamma}_{\pm} = A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

$$rac{1}{-\log \overline{\gamma}_{\pm} = A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

$$rac{1}{-\log \overline{\gamma}_{\pm} = A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

$$rac{1}{-\log \overline{\gamma}_{\pm} = A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

$$rac{1}{-\log \overline{\gamma}_{\pm} = A_c |z_+ z_-| \sqrt{I_c / c^{\varphi}}}{1 + \sqrt{I_c / c^{\varphi}}}$$

 valjanost teorije procjenjujemo na temelju usporedbe eksperimentalno određenih prosječnih koeficijenata aktiviteta i onih izračunatih modelom

Slika 14. Usporedba eksperimentalno određene ovisnosti prosječnog koeficijenta aktiviteta o ionskoj jakosti s onom izračunatom na temelju Debye-Hückelovog zakona i Debye-Hückelovog graničnog zakona.

– granični Debye-Hückelov zakon je valjan samo u vrlo razrijeđenim otopinama

 anomalija jakih elektrolita → eksperimentalno se primjećuje porast koeficijenta aktiviteta pri visokim koncentracijama

Slika 15. Prosječni koeficijent aktiviteta u ovisnosti o molalnosti za otopinu klorovodične kiseline.

- mogući uzroci odstupanja su u tome da Debye-Hückelov model zanemaruje:
- strukturiranost otapala
- ✤ interakcije između iona i otapala
- utjecaj iona na električnu permitivnost otapala
- ovisnost solvatacije iona o koncentraciji elektrolita
- ✤ specifične interakcije između iona
- ✤ ionsku asocijaciju

MODEL IONSKE ASOCIJACIJE

 Bjerrumov model razmatra mogućnost nastanka ionskog para u otopini

 $M^+(aq) + A^-(aq) \leftrightarrow MA(aq)$

- korekcija Debye-Hückelove teorije:

$$\gamma = (1 - \theta)\gamma_i$$
 θ – udio ionskih parova

Slika 16. Niels Bjerrum (1879 – 1958).⁹

Udio ionskih parova?

22

Kolika je vjerojatnost nalaženja aniona unutar plašta promjera *r* i debljine d*r*?

Slika 17. Vjerojatnost nalaženja aniona u plaštu oko centralnog kationa.

$$\rho = 4\pi r^2 C e^{\lambda/r}$$

- ρ gustoća vjerojatnosti nalaženja aniona C – brojčana koncentracija aniona r – udaljenost od kationa
- z_+ nabojni broj kationa z_- – nabojni broj aniona
 - e elementarni naboj [1,602 × 10⁻¹⁹ C]
 - $\varepsilon_{\rm r}$ relativna permitivnost medija
 - ε_0 permitivnost vakuuma [8,8542 × 10⁻¹² F m⁻¹]
 - $k_{\rm B}$ Boltzmannova konstanta [1,3807 × 10⁻²³ J K⁻¹]

T – temperatura [K]

$$\lambda = \frac{z_+ z_- e^2}{4\pi\varepsilon_r \varepsilon_0 k_{\rm B} T}$$

Slika 18. Gustoća vjerojatnosti nalaženja aniona u ovisnosti o udaljenosti od kationa.

– funkcija $\rho(r)$ na karakterističnoj kritičnoj udaljenosti

- pri 25 ° C za vodu q = 0,36 nm

- Bjerrum ionskim parom smatra sve slučajeve kad su ioni bliže od q
- anion ne može biti bliže kationu od njegovog polumjera
- u slučaju r > q ionski parovi ne nastaju bez obzira na koncentraciju iona

– udio ionskih parova odgovara vjerojatnosti nalaženja aniona od najmanje moguće udaljenosti polumjera kationa (a) do q

$$\theta = P = \int_a^q \rho dr = \int_a^q 4\pi r^2 C e^{\lambda/r} dr$$

 $M^+(aq) + A^-(aq) \leftrightarrow MA(aq)$

– ovaj integral se može riješiti ako su poznati z_+ , z_- , ε_r , *a* i *C*

 $\gamma = (1 - \theta) \gamma_i$

- $K = \frac{\left[\text{MA}\right]}{\left[\text{M}^{+}\right]\left[\text{A}^{-}\right]} = \frac{\theta}{c(1-\theta)^{2}}$ $K = \frac{K \text{koncentracijska konstanta ravnoteže}}{asocijacije iona [dm³ mol⁻¹]}$ c ukupna koncentracija iona
- nedostatci Bjerrumovog modela:
 - proizvoljan odabir definicije ionskog para
 - nije moguće normirati funkciju gustoće vjerojatnosti

KEMIJSKE I ELEKTROKEMIJSKE REAKCIJE

Koja je razlika između kemijske i elektrokemijske reakcije?

Slika 19. Redoks reakcija između vrste A i vrste B kada se reakcija odvija (a) kemijskim i (b) elektrokemijskim putem.¹⁰

 kod elektrokemijske reakcije reagirajuće vrste nisu u izravnom dodiru, elektronski prijelazi su usmjereni, elektroni prolaze dalek put, reakcija se odvija na elektrodama

¹⁰ M. Metikoš-Huković, *Elektrokemija*, Fakultet kemijskog injženjerstva i tehnologije, Zagreb, 2000, str. 2.

T. Klačić, Elektrokemija

ELEKTROKEMIJSKI ČLANCI

- elektrokemijski članci su sustavi u kojima dolazi do pretvorbe kemijske energije u električnu i obrnuto
- vrste elektrokemijskih članaka:
 - elektrolizni članci
 - kemijska reakcija omogućena vanjskim izvorom električne energije
 - galvanski članci
 - spontana kemijska reakcija kao posljedica razlike potencijala elektroda

¹⁰ M. Metikoš-Huković, *Elektrokemija*, Fakultet kemijskog injženjerstva i tehnologije, Zagreb, 2000, str. 6.

FARADAYEV ZAKON ELEKTROLIZE

Slika 21. Michael Faraday (1791 – 1867).¹¹

z – broj izmijenjenih elektrona

¹¹ https://en.wikipedia.org/wiki/Michael_Faraday#/media/File:Michael_Faraday_sitting_crop.jpg (datum pristupa: 21.11.2024.)

GALVANSKI ČLANCI

– Daniellov članak:

$$\begin{array}{l} A(-): Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-} \\ K(+): Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s) \end{array}$$

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

- shematski prikaz članaka:

 $Zn(s)|ZnSO_4(aq)|CuSO_4(aq)|Cu(s)$ $Zn(s)|ZnSO_4(aq)||CuSO_4(aq)|Cu(s)$

– difuzijski potencijal

$$\lambda_0(K^+) = \lambda_0(Cl^-) = 73,5 \text{ S cm}^2 \text{ mol}^{-1}$$

Slika 22. (a) Daniellov članak i verzija Daniellovog članka sa solnim mostom.

ELEKTROMOTIVNOST GALVANSKOG ČLANKA

 – elektromotivnost (elektromotorna sila) ja napon galvanskog članka kada krugom ne teće struja

$$E = E_{\rm D} - E_{\rm L}$$

- E elektromotivnost $E_{\rm D}$ – elektrodni potencijal desno prikazanog polučlanka u shemi
- $E_{\rm L}$ elektrodni potencijal lijevo prikazanog polučlanka u shemi

- poveznica između elektromotivnosti članka i reakcijske Gibbsove funkcije

$$dG = dw \qquad w - \text{maksimalni nevolumni rad}$$

$$dG = -EdQ \longleftarrow dQ = edN_e = eLdn_e = Fdn_e$$

$$dG = -EFdn_e \leftarrow d\xi = \frac{dn_e}{z} \qquad z - \text{broj izmijenjenih elektrona}$$

$$dG = -EFzd\xi \leftarrow dn_e = zd\xi$$

NERNSTOVA JEDNADŽBA

– povezuje elektrodne potencijale i elektromotivnost članka sa sastavom otopine
– primjenjiva isključivo za reverzibilne sustave

$$\Delta_{\mathbf{r}}G = \sum_{i=1}^{N} \nu_i \mu_i = \sum_{i=1}^{N} \nu_i \left(\mu_i^{\bullet} + RT \ln a_i \right)$$

$$\Delta_{\mathbf{r}}G = \sum_{i=1}^{N} \nu_i \mu_i^{\bullet} + RT \sum_{i=1}^{N} \ln a_i^{\nu_i}$$

$$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\oplus} + RT\ln\prod_{i=1}^{N}a_{i}^{\nu_{i}} = -zFE$$

Slika 23. Walther Nernst (1864 – 1941).¹²

$$E = E^{\bullet} - \frac{RT}{zF} \ln \prod_{i=1}^{N} a_i^{\nu_i}$$

$$E = -\frac{\Delta_{\mathbf{r}} G^{\Phi}}{zF} - \frac{RT}{zF} \ln \prod_{i=1}^{N} a_i^{\nu_i} \quad E^{\Phi} = -\frac{\Delta_{\mathbf{r}} G^{\Phi}}{zF}$$

¹² https://en.wikipedia.org/wiki/Walther_Nernst (datum pristupa: 6.12.2024.)

STANDARDNI ELEKTRODNI POTENCIJAL

$$E = E^{\oplus} - \frac{RT}{zF} \ln \prod_{i=1}^{N} a_i^{\nu_i}$$

 $a_i = 1$ $E = E^{\bullet}$

- standardna vodikova elektroda (SVE)

$$Pt(s)|H^+(aq, a = 1)|H_2(g, a = 1)|$$

- prema konvenciji $E^{\Theta}(SVE) = 0$ pri svim temperaturama

$$E^{\bullet} = E_{\rm K}^{\bullet} - E^{\bullet} \left({\rm SVE} \right)$$
$$E^{\bullet} \left({\rm SVE} \right) = 0$$

$$E^{\bullet} = E_{\rm K}^{\bullet}$$

 $A(-): H_2(g) \rightarrow 2 H^+(aq) + 2 e^-$

¹⁰ M. Metikoš-Huković, *Elektrokemija*, Fakultet kemijskog injženjerstva i tehnologije, Zagreb, 2000, str. 6.

Slika 25. Ovisnost Gibbsove funkcije o dosegu reakcije.

– u ravnoteži: $\Delta_{\rm r}G = 0$ E = 0

$$0 = E^{\bullet} - \frac{RT}{zF} \ln \prod_{i=1}^{N} a_i^{\nu_i} = E^{\bullet} + -\frac{RT}{zF} \ln K^{\bullet}$$

$$E^{\oplus} = \frac{RT}{zF} \ln \prod_{i=1}^{N} K^{\oplus}$$

Koja reakcija će se odvijati na katodi?

$$Rh^{+}(aq) + e^{-} \rightarrow Rh(s) \qquad E^{\Theta} = 0,60 \text{ V}$$
$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \qquad E^{\Theta} = 0,80 \text{ V}$$

$$E = E^{\bullet} + \frac{RT}{\nu_e F} \ln \prod_{i=1}^N a_i^{\nu_i}$$

 $v_{\rm e}$ – stehiometrijski broj elektrona

- pri 25 °C za
$$c(Rh^+) = 0,1 \text{ mol } dm^{-3}$$

i $c(Ag^+) = 1,0 \times 10^{-5} \text{ mol } dm^{-3}$

 $E(Rh^+/Rh) = 0,54 V$ $E(Ag^+/Ag) = 0,50 V$

– odvijat će se reakcija s većim E

UTJECAJ TEMPERATURE NA ELETROMOTIVNOST ČLANKA

$$\Delta_{\rm r}G = -zFE = \Delta_{\rm r}H - T\Delta_{\rm r}S$$

$$E = \frac{\Delta_{\rm r} S}{zF} T - \frac{\Delta_{\rm r} H}{zF}$$

$$y = a \cdot x + b$$

$$\mathbf{y} = E$$

 $\mathbf{x} = T$

Slika 26. Ovisnost elektromotivnosti članka o temperaturi.

$$a = \frac{\Delta_{r}S}{zF} \qquad \Delta_{r}S = azF \qquad -\Delta_{r}H \ i \ \Delta_{r}S \ ovise \ o \ temperaturi:$$
$$b = -\frac{\Delta_{r}H}{zF} \qquad \Delta_{r}H = -zFb \qquad \Delta_{r}H = -zF\left(\frac{\partial(E/T)}{\partial(1/T)}\right)_{p} \qquad \Delta_{r}S = zF\left(\frac{\partial E}{\partial T}\right)_{p}$$

VRSTE ELEKTRODA

- podjela elektroda prema izvedbi:
 - ✤ elektrode prve vrste
 - atomi metala u ravnoteži s
 pripadnim kationima u otopini
 - elektrode druge vrste
 - metal presvučen poroznim slojem neke slabo topljive soli tog metala i uronjena u otopinu koja sadrži ione koji grade tu slabo topljivu sol
 - ✤ redoks elektrode
 - elektrode kod kojih materijal same elektrode ne sudjeluje u redoks reakciji

Slika 27. Elektroda (a) prve i (b) druge vrste te (b) redoks elektroda.

- podjela prema funkciji:
 - ✤ referentne elektrode
 - ✤ ion-selektivne elektrode

REFERENTNE ELEKTRODE

- imaju stalan i stabilan potencijal koji je neovisan o sastavu otopine analita

Slika 28. Izvedba (a) srebro/srebrov klorid elektrode i (b) kalomelove elektrode.

– Ag/AgCl elektroda

 $Ag(s)|AgCl(s)|Cl^{-}(aq)$

$$E = E^{\bullet} - \frac{RT}{F} \ln a \left(\mathrm{Cl}^{-} \right)$$

Tablica 4. Potencijal (E/mV) srebro/srebrov klorid elektrode.

c(KCl)	$1 \text{ mol } dm^{-3}$	$3 \text{ mol } dm^{-3}$
$\theta = 10 \ ^{\circ}\mathrm{C}$	244,4	217,4
$\theta = 20 \ ^{\circ}\mathrm{C}$	239,6	210,5
$\theta = 30 \ ^{\circ}\mathrm{C}$	233,4	203,4

ION-SELEKTIVNE ELEKTRODE

- elektrodni potencijal ovisi o koncentraciji jedne vrste iona
- razlika potencijala koja se uspostavlja na međupovršini membrana/otopina analita jedini je promjenjivi doprinos ukupnom potencijalu ion-selektivne elektrode
- koriste se membrane od različitih materijala ovisno o analitu
- sadrže inertnu referentnu elektrodu (najčešće Ag/AgCl elektrodu)
- vrste ion-selektivnih elektroda:
 - staklene elektrode
 - ✤ ion-selektivne elektrode s čvrstom membranom
 - ✤ ion-selektivne elektrode s tekućom membranom
 - elektrode za plinove
 - enzimske elektrode

Slika 29. Søren Peter Lauritz Sørensen (1868 – 1939).¹³

Slika 30. Izvedba staklene elektrode.

- mehanizam:

- izmjena H⁺ iona iz otopine s Na⁺ ionima iz stakla
- ✤ nabijanje na površini

 \equiv SiOH $\rightarrow \equiv$ SiO⁻ + H⁺(aq)

$$\equiv \text{SiOH} + \text{H}^+(\text{aq}) \rightarrow \equiv \text{SiOH}_2^+$$

¹³ https://commons.wikimedia.org/wiki/File:Soeren_Peter_Lauritz_Soerensen_1868-1939_by_Laurberg_1918.jpg (datum pristupa: 6.12.2024.)

T. Klačić, *Elektrokemija*

2024./2025.

$$E_{\rm S}={E_{\rm S}}^{\oplus}-\alpha \frac{RT\ln 10}{F}{\rm pH}$$

 $E_{\rm S}$ – potencijal staklene elektrode [V] $E_{\rm S}^{\,\Theta}$ – standardni potencijal staklene elektrode [V] α – odstupanje od Nernstovskog nagiba [1 – 5 %] R – opća plinska konstanta [8,3145 J K⁻¹ mol⁻¹] T-temperatura [K] F – Faradayeva konstanta [96 485 C mol⁻¹]

– nedostatci:

- ♦ alkalijska pogreška
 ♦ kiselinska pogreška
 2 ≤ pH ≤ 12
- ✤ difuzijski potencijal (npr. za $c(HCl) = 0.01 \text{ mol } dm^{-3}$ $E_i = 3 \text{ mV}$ što odgovara $\Delta pH = 0,05)$

– potrebna nam je referentna elektroda da bi mogli odrediti pH:

Slika 31. Izvedba kombinirane elektrode.¹⁴

¹⁴ https://www.hamiltoncompany.com/process-analytics/ph-and-orp-knowledge/the-ph-measurement-system/combination-phelectrode (datum pristupa: 6.12.2024.)

 da bi se odredio pH otopine potrebno je prethodno izbaždariti kombiniranu elektrodu

Slika 32. Ovisnost elektromotivnosti kombinirane elektrode o pH standardnih pufera.

⁴⁰

pH SKALA

- pH skala je definirana pomoću sedam različitih pufera (primarnih standarda) vrlo točnim mjerenjem elektromotivnosti članaka koji su poput Harnedovog članka
- članak Pt(s) $|H_2(g)|$ pufer, Cl⁻(aq)|AgCl(s)|Ag(s)

$$E = E^{\oplus} - \frac{RT \ln 10}{F} \log \frac{\gamma \left(\text{Cl}^{-} \right) c \left(\text{Cl}^{-} \right)}{c^{\oplus}} - \frac{RT \ln 10}{F} \text{pH}$$

– Bates-Guggenheimova konvencija:

Slika 30. Izvedba Harnedovog članka.¹⁵

 $aB = 1,5 \rightarrow a = 4,6 \text{ Å}$

¹⁵ P. Spitzer, K. W. Pratt, *J. Solid State Electrochem.* **15** (2011) 69–76.